High performance perovskite sub-module with sputtered SnO2 electron transport layer

Abstract Hybrid perovskite solar cells (PSC) have gained stupendous achievement in single/tandem solar cell, semitransparent solar cell and flexible devices. Aiming for potential commercialization of perovskite photovoltaic technology, up scalable processing is crucial for all function layers in PSC. Herein we present a study on room temperature magnetron sputtering of tin oxide electron transporting layer (ETL) and apply it in a large area PSC for low cost and continues manufacturing. The SnO2 sputtering targets with varied oxygen and deposition models are used. Specifically, the working gas ratio of Ar/O2 during the radio frequency sputtering process plays a crucial role to obtain optimized SnO2 film. The sputtered SnO2 films demonstrate similar morphological and crystalline properties, but significant varied defect states and carrier transportation roles in the PSC devices. With further modification of thickness of SnO2, the PSCs based on sputtered SnO2 ETL shows a champion efficiency of 18.20% in small area and an efficiency of 14.71% in sub-module with an aperture area of 16.07 cm2, which is the highest efficiency of perovskite sub module with sputtered ETLs.

[1]  J. Bell,et al.  Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnOx films for Enhancing the Performance of Perovskite Solar Cells. , 2018, ChemSusChem.

[2]  Sandeep Kumar Pathak,et al.  Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 , 2016 .

[3]  Tongle Bu,et al.  Humidity controlled sol-gel Zr/TiO2 with optimized band alignment for efficient planar perovskite solar cells , 2016 .

[4]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[5]  Dong Yang,et al.  E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells , 2017 .

[6]  G. Fang,et al.  Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells , 2015 .

[7]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[8]  M. Ikegami,et al.  Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO2-Based Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[9]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[10]  Perovskite Thin Film Synthesised from Sputtered Lead Sulphide , 2018, Scientific Reports.

[11]  Dapeng Yu,et al.  Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells , 2016 .

[12]  Zhengshan J. Yu,et al.  Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells , 2018, ACS Energy Letters.

[13]  H. Tao,et al.  Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells , 2018 .

[14]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[15]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[16]  Xiong Yin,et al.  Ternary Oxides in the TiO2-ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15. , 2016, ACS applied materials & interfaces.

[17]  Jing Li,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[18]  Wen-Sheng Chang,et al.  Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting , 2015 .

[19]  Y. Qi,et al.  Fully Solution‐Processed TCO‐Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications , 2018 .

[20]  Kai Zhu,et al.  Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23% , 2018 .

[21]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[22]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[23]  J. Troughton,et al.  Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[24]  S. Ramakrishna,et al.  Influence of Charge Transport and Defects on the Performance of Planar and Mesostructured Perovskite Solar Cells , 2017 .

[25]  T. Edvinsson,et al.  Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells , 2018 .

[26]  W. Shen,et al.  Fully Solution‐Processed Semi‐Transparent Perovskite Solar Cells With Ink‐Jet Printed Silver Nanowires Top Electrode , 2018 .

[27]  Hongli Gao,et al.  SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress , 2019, Journal of Energy Chemistry.

[28]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[29]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[30]  Jing Li,et al.  Stacking n-type layers: Effective route towards stable, efficient and hysteresis-free planar perovskite solar cells , 2018 .

[31]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[32]  C. Brabec,et al.  Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications , 2018 .

[33]  Zhenhua Yu,et al.  Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells , 2016 .

[34]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[35]  G. Fang,et al.  Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application , 2017 .

[36]  S. Priya,et al.  Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy , 2018, Advanced materials.

[37]  Zhike Liu,et al.  Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells , 2018 .

[38]  Yu Yu,et al.  Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer. , 2017, ACS applied materials & interfaces.

[39]  Tongle Bu,et al.  Enhanced Crystallinity of Low-Temperature Solution-Processed SnO2 for Highly Reproducible Planar Perovskite Solar Cells. , 2018, ChemSusChem.

[40]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[41]  W. Park,et al.  Three-Dimensional Monolayer Graphene and TiO2 Hybrid Architectures for High-Efficiency Electrochemical Photovoltaic Cells , 2015 .

[42]  Xudong Guo,et al.  Multifunctional MgO Layer in Perovskite Solar Cells. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  S. Zuo,et al.  RF sputtered CdS films as independent or buffered electron transport layer for efficient planar perovskite solar cell , 2018 .

[44]  Junjie Ma,et al.  Highly Efficient and Stable Planar Perovskite Solar Cells With Large‐Scale Manufacture of E‐Beam Evaporated SnO2 Toward Commercialization , 2017 .