Permutations uniquely identify states and unknown external forces in non-autonomous dynamical systems.

It has been shown that a permutation can uniquely identify the joint set of an initial condition and a non-autonomous external force realization added to the deterministic system in given time series data. We demonstrate that our results can be applied to time series forecasting as well as the estimation of common external forces. Thus, permutations provide a convenient description for a time series data set generated by non-autonomous dynamical systems.

[1]  Tyrus Berry,et al.  Kalman-Takens filtering in the presence of dynamical noise , 2016 .

[2]  P. Grassberger,et al.  Generating partitions for the dissipative Hénon map , 1985 .

[3]  K. Aihara,et al.  Chaotic neural networks , 1990 .

[4]  Michael L Klein,et al.  Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics , 2004, Nature materials.

[5]  Yoshito Hirata,et al.  Detecting nonlinear stochastic systems using two independent hypothesis tests. , 2019, Physical review. E.

[6]  Michael Small,et al.  Regenerating time series from ordinal networks. , 2017, Chaos.

[7]  Yoshito Hirata,et al.  Estimating topological entropy via a symbolic data compression technique. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Marc Lefranc,et al.  From template analysis to generating partitions I: periodic orbits, knots and symbolic encodings , 1999, chao-dyn/9907029.

[9]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[10]  Michael Ghil,et al.  Stochastic climate dynamics: Random attractors and time-dependent invariant measures , 2011 .

[11]  Marc Lefranc,et al.  From template analysis to generating partitions II: characterization of the symbolic encodings , 1999, chao-dyn/9907030.

[12]  A. Mees,et al.  Testing for general dynamical stationarity with a symbolic data compression technique , 1998, chao-dyn/9812030.

[13]  Kazuyuki Aihara,et al.  Dimensionless embedding for nonlinear time series analysis. , 2017, Physical review. E.

[14]  David S. Broomhead,et al.  Delay embedding in the presence of dynamical noise , 1998 .

[15]  Miguel A. F. Sanjuán,et al.  Combinatorial detection of determinism in noisy time series , 2008 .

[16]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[17]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[18]  Lai,et al.  Estimating generating partitions of chaotic systems by unstable periodic orbits , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  S. Orszag,et al.  Extended Boltzmann Kinetic Equation for Turbulent Flows , 2003, Science.

[20]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[21]  Kazuyuki Aihara,et al.  Reproduction of distance matrices and original time series from recurrence plots and their applications , 2008 .

[22]  Timothy D Sauer,et al.  Reconstruction of shared nonlinear dynamics in a network. , 2004, Physical review letters.

[23]  C. Kulp,et al.  Using forbidden ordinal patterns to detect determinism in irregularly sampled time series. , 2016, Chaos.

[24]  E. Olbrich,et al.  Reconstruction of the parameter spaces of dynamical systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jürgen Kurths,et al.  Recurrence plots for the analysis of complex systems , 2009 .

[26]  José M. Amigó,et al.  Topological permutation entropy , 2007 .

[27]  Michael Small,et al.  Examining k-nearest neighbour networks: Superfamily phenomena and inversion. , 2016, Chaos.

[28]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[29]  Matthew B Kennel,et al.  Estimating good discrete partitions from observed data: symbolic false nearest neighbors. , 2003, Physical review letters.

[30]  K. Judd,et al.  Estimating a generating partition from observed time series: symbolic shadowing. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. Nagumo,et al.  On a response characteristic of a mathematical neuron model , 1972, Kybernetik.

[32]  Kazuyuki Aihara,et al.  Faithfulness of Recurrence Plots: A Mathematical Proof , 2015, Int. J. Bifurc. Chaos.

[33]  Davide Faranda,et al.  Stochastic Chaos in a Turbulent Swirling Flow. , 2016, Physical review letters.

[34]  Arthur A. B. Pessa,et al.  Characterizing stochastic time series with ordinal networks. , 2019, Physical review. E.

[35]  Andreas Groth Visualization of coupling in time series by order recurrence plots. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Michael Small,et al.  Counting forbidden patterns in irregularly sampled time series. II. Reliability in the presence of highly irregular sampling. , 2016, Chaos.

[37]  TOHRU KOHDA,et al.  Beta encoders: Symbolic Dynamics and Electronic Implementation , 2012, Int. J. Bifurc. Chaos.

[38]  Yoshito Hirata,et al.  Surrogate Data Preserving All the Properties of Ordinal Patterns up to a Certain Length , 2019, Entropy.

[39]  R. Friedrich,et al.  On a quantitative method to analyze dynamical and measurement noise , 2003 .

[40]  L. Kocarev,et al.  The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems , 2005, nlin/0503044.

[41]  H. Akaike A new look at the statistical model identification , 1974 .

[42]  Kevin Judd,et al.  Reconstructing noisy dynamical systems by triangulations , 1997 .

[43]  Michael Small,et al.  Counting forbidden patterns in irregularly sampled time series. I. The effects of under-sampling, random depletion, and timing jitter. , 2016, Chaos.

[44]  A. Mees,et al.  Context-tree modeling of observed symbolic dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.