Data-dependent triangulations for scattered data interpolation and finite element approximation

[1]  J. Bramble,et al.  Triangular elements in the finite element method , 1970 .

[2]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[3]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[4]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[5]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[6]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[7]  C. Lawson Software for C1 interpolation , 1977 .

[8]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[9]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[10]  Robert J. Renka,et al.  Algorithm 624: Triangulation and Interpolation at Arbitrarily Distributed Points in the Plane , 1984, TOMS.

[11]  Robert E. Barnhill,et al.  Surfaces in computer aided geometric design: a survey with new results , 1985, Comput. Aided Geom. Des..

[12]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[13]  R. E. Carlson Shape preserving interpolation , 1987 .

[14]  L. L. Schumaker,et al.  Numerical aspects of spaces of piecewise polynomials on triangulations , 1987 .

[15]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[16]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[17]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[18]  Y. Yoon,et al.  Triangulation of scattered data in 3D space , 1988 .

[19]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[20]  Nira Dyn,et al.  Algorithms for the construction of data dependent triangulations , 1990 .

[21]  S. Rippa,et al.  Minimum energy tiangulations for elliptic problems , 1990 .

[22]  Bernd Mulansky Interpolation of scattered data by a bivariate convex function : I: Piecewise linear C0-interpolation , 1990 .

[23]  Larry L. Schumaker,et al.  Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..

[24]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[25]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[26]  Larry L. Schumaker,et al.  Least Squares Fitting by Linear Splines on Data Dependent Triangulations , 1991, Curves and Surfaces.

[27]  Larry L. Schumaker,et al.  Use of Simulated Annealing to Construct Triangular Facet Surfaces , 1991, Curves and Surfaces.

[28]  Shmuel Rippa,et al.  Adaptive Approximation by Piecewise Linear Polynomials on Triangulations of Subsets of Scattered Data , 1992, SIAM J. Sci. Comput..

[29]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[30]  Nira Dyn,et al.  Boundary correction for piecewise linear interpolation defined over data-dependent triangulations , 1992 .

[31]  Nira Dyn,et al.  Transforming triangulations in polygonal domains , 1993, Comput. Aided Geom. Des..

[32]  M. Baines Moving finite elements , 1994 .