Compositionally and density stratified igneous terrain in Jezero crater, Mars
暂无分享,去创建一个
Linda C. Kah | Jeffrey R. Johnson | O. Forni | S. Clegg | R. Wiens | O. Gasnault | C. Pilorget | E. Cloutis | S. Le Mouélic | S. McLennan | F. Poulet | P. Pilleri | Shiv k. Sharma | F. Montmessin | W. Rapin | A. Cousin | N. Lanza | J. Lasue | N. Mangold | A. Ollila | V. Sautter | N. Melikechi | R. Léveillé | P. Meslin | P. Pinet | T. Fouchet | J. Madariaga | G. Arana | W. Fischer | N. Murdoch | B. Weiss | K. Williford | K. Stack | P. Willis | D. Mimoun | J. Laserna | K. Benzerara | J. Martínez-Frías | F. Rull | O. Beyssac | S. Bernard | G. Dromart | Sanjeev Gupta | T. Bosak | E. Hausrath | L. Mayhew | D. Shuster | S. Siljeström | L. Crumpler | J. Moros | J. Tarnas | P. Gasda | S. Schröder | S. Maurice | L. Kah | Ryan B. Anderson | A. Udry | E. Gibbons | L. Mandon | C. Quantin-Nataf | E. Dehouck | B. Horgan | Ryan B Anderson | M. Veneranda | A. Stott | R. Francis | K. Castro | A. Brown | J. Frydenvang | T. Bertrand | T. Acosta-Maeda | S. Connell | N. Turenne | T. Gabriel | J. Simon | B. Chide | X. Jacob | R. Lorenz | E. Clavé | D. Vogt | C. Alvarez-Llamas | J. Manrique | Rebecca J. Smith | P. Beck | C. Legett | H. Kalucha | S. M. Angel | T. McConnochie | K. Farley | E. Knutsen | C. Royer | J. Hall | B. Bousquet | Evan Kelly | Guillermo Lopez Reyes | R. Anderson | Rebecca J. Smith | César Alvarez-Llamas
[1] W. T. Elam,et al. An olivine cumulate outcrop on the floor of Jezero crater, Mars , 2022, Science.
[2] M. Mellon,et al. Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars , 2022, Science advances.
[3] O. Forni,et al. Optical calibration of the SuperCam instrument body unit spectrometers. , 2022, Applied optics.
[4] L. Nittler,et al. Organic synthesis associated with serpentinization and carbonation on early Mars , 2022, Science.
[5] O. Forni,et al. MULTIVARIATE AND ENSEMBLE MANGANESE CALIBRATION MODELS FOR SUPERCAM , 2022 .
[6] R. Wiens,et al. First-results from the Perseverance SHERLOC investigation: Aqueous alteration processes and implications for organic geochemistry in Jezero crater, , 2022 .
[7] R. Wiens,et al. INFRARED REFLECTANCE OF ROCKS AND REGOLITH AT JEZERO CRATER: ONE YEAR OF SUPERCAM OBSERVATIONS , 2022 .
[8] O. Forni,et al. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.
[9] O. Forni,et al. SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.
[10] O. Forni,et al. The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission , 2021, Icarus.
[11] E. Cloutis,et al. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate‐Bearing Rocks Within and Outside of Jezero Crater , 2021, Journal of geophysical research. Planets.
[12] Linda C. Kah,et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars , 2021, Science.
[13] Linda C. Kah,et al. Stratigraphic Relationships in Jezero Crater, Mars: Constraints on the Timing of Fluvial‐Lacustrine Activity From Orbital Observations , 2021, Journal of Geophysical Research: Planets.
[14] V. Sautter,et al. Martian meteorites reflectance and implications for rover missions , 2021, 2203.10051.
[15] T. Glotch,et al. Distinct Carbonate Lithologies in Jezero Crater, Mars , 2021, Geophysical research letters.
[16] A. Doressoundiram,et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.
[17] Justin M. McGlown,et al. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.
[18] Linda C. Kah,et al. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team , 2020, Space Science Reviews.
[19] P. Bernardi,et al. SuperCam Calibration Targets: Design and Development , 2020, Space Science Reviews.
[20] K. Siebach,et al. Constraining Ancient Magmatic Evolution on Mars Using Crystal Chemistry of Detrital Igneous Minerals in the Sedimentary Bradbury Group, Gale Crater, Mars , 2020, Journal of Geophysical Research: Planets.
[21] O. Forni,et al. Pre-launch radiometric calibration of the infrared spectrometer onboard SuperCam for the Mars2020 rover. , 2020, The Review of scientific instruments.
[22] C. Herd,et al. What Martian Meteorites Reveal About the Interior and Surface of Mars , 2020, Journal of Geophysical Research: Planets.
[23] R. V. Morris,et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity , 2020 .
[24] M. Rice,et al. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars , 2020, Icarus.
[25] N. Mangold,et al. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars , 2020 .
[26] C. Viviano,et al. Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.
[27] K. Stack,et al. Geologic map of Jezero crater and the Nili Planum region, Mars , 2020 .
[28] G. Howarth,et al. Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars , 2019 .
[29] R. Clark,et al. Visible and Near-Infrared Reflectance Spectroscopy , 2019, Remote Compositional Analysis.
[30] K. Kinch,et al. Crater Statistics on the Dark‐Toned, Mafic Floor Unit in Jezero Crater, Mars , 2019, Geophysical Research Letters.
[31] P. Rettberg,et al. The potential science and engineering value of samples delivered to Earth by Mars sample return , 2019, Meteoritics & Planetary Science.
[32] C. Herd. RECONCILING REDOX : MAKING SPATIAL AND TEMPORAL SENSE OF OXYGEN FUGACITY VARIATIONS IN MARTIAN IGNEOUS ROCKS , 2019 .
[33] J. Day,et al. 1.34 billion-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites , 2018, Geochimica et Cosmochimica Acta.
[34] J. Grant,et al. The science process for selecting the landing site for the 2020 Mars rover , 2018, Planetary and Space Science.
[35] J. Mustard,et al. Origin and Emplacement of the Circum-Isidis Olivine-Rich Unit , 2018 .
[36] M. Golombek,et al. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas , 2018, Geophysical research letters.
[37] M. Salvatore,et al. The geological history of Northeast Syrtis Major, Mars , 2017 .
[38] G. Howarth,et al. Petrogenesis of the NWA 7320 enriched martian gabbroic shergottite: Insight into the martian crust , 2017 .
[39] K. Nishiizumi,et al. Two billion years of magmatism recorded from a single Mars meteorite ejection site , 2017, Science Advances.
[40] J. Head,et al. Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration , 2017 .
[41] D. Montgomery,et al. Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits , 2015 .
[42] L. Richan,et al. Mode of emplacement of Archean komatiitic tuffs and flows in the Selkirk Bay area, Melville Peninsula, Nunavut, Canada , 2015 .
[43] F. McCubbin,et al. Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .
[44] John F. Mustard,et al. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .
[45] J. M. Bush,et al. Igneous Layering in Basaltic Magma Chambers , 2015 .
[46] G. J. Taylor,et al. The bulk composition of Mars , 2013 .
[47] Jean-Pierre Bibring,et al. Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .
[48] J. Head,et al. Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing , 2012 .
[49] M. Forien,et al. Settling and compaction of olivine in basaltic magmas: an experimental study on the time scales of cumulate formation , 2012, Contributions to Mineralogy and Petrology.
[50] James W. Head,et al. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate , 2012 .
[51] N. Bridges,et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .
[52] J. Filiberto,et al. Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior , 2011 .
[53] F. Felletti,et al. Validation of Hurst statistics: a predictive tool to discriminate turbiditic sub-environments in a confined basin , 2010 .
[54] Simon J. Hook,et al. HYDROTHERMAL FORMATION OF CLAY-CARBONATE ALTERATION ASSEMBLAGES IN THE , 2010, 1402.1150.
[55] V. Chevrier,et al. Reflectance Spectra of Low-Temperature Chloride and Perchlorate Hydrates and Their Relevance to the Martian Surface , 2009 .
[56] John F. Mustard,et al. Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .
[57] John F. Mustard,et al. Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .
[58] Victoria E. Hamilton,et al. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .
[59] M. D. Dyar,et al. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.
[60] G. Neukum,et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .
[61] Dougal A. Jerram,et al. On estimating crystal shape for crystal size distribution analysis , 2006 .
[62] James W. Head,et al. Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .
[63] Carle M. Pieters,et al. RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility , 2004 .
[64] C. Schwandt,et al. Crystallization conditions of Los Angeles, a basaltic Martian meteorite , 2002 .
[65] H. Schmincke,et al. Evolution of palagonite: Crystallization, chemical changes, and element budget , 2001 .
[66] Michael Denis Higgins,et al. Measurement of crystal size distributions , 2000 .
[67] D. Stow,et al. Deep-water massive sands: nature, origin and hydrocarbon implications , 2000 .
[68] J. Bridge,et al. Preservation of planar laminae due to migration of low‐relief bed waves over aggrading upper‐stage plane beds: comparison of experimental data with theory , 1997 .
[69] Fei Wang,et al. Preservation of Cross-strata Due to Migration of Subaqueous Dunes Over Aggrading and Non-aggrading Beds: Comparison of Experimental Data with Theory , 1997 .
[70] R. E. Wilson,et al. Recent chemical weathering of basalts , 1992 .
[71] P. Pinet,et al. Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth‐based near‐infrared telescopic charge‐coupled device imaging , 1990 .
[72] C. Paola,et al. Upper‐regime parallel lamination as the result of turbulent sediment transport and low‐amplitude bed forms , 1989 .
[73] J. Kasting,et al. The case for a wet, warm climate on early Mars. , 1987, Icarus.
[74] J. Bédard. The Development of Compositional and Textural Layering in Archaean Komatiites and in Proterozoic Komatiitic Basalts from Cape Smith, Québec, Canada , 1987 .
[75] B. Windley,et al. Archean Plate Tectonics: Constraints and Inferences , 1982, The Journal of Geology.
[76] P. E. Potter,et al. BED THICKNESS AND GRAIN SIZE: GRADED BEDS , 1966 .
[77] S. Kotsopoulos,et al. Design and Development , 2015 .