Compositionally and density stratified igneous terrain in Jezero crater, Mars

Before Perseverance, Jezero crater’s floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.

[1]  W. T. Elam,et al.  An olivine cumulate outcrop on the floor of Jezero crater, Mars , 2022, Science.

[2]  M. Mellon,et al.  Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars , 2022, Science advances.

[3]  O. Forni,et al.  Optical calibration of the SuperCam instrument body unit spectrometers. , 2022, Applied optics.

[4]  L. Nittler,et al.  Organic synthesis associated with serpentinization and carbonation on early Mars , 2022, Science.

[5]  O. Forni,et al.  MULTIVARIATE AND ENSEMBLE MANGANESE CALIBRATION MODELS FOR SUPERCAM , 2022 .

[6]  R. Wiens,et al.  First-results from the Perseverance SHERLOC investigation: Aqueous alteration processes and implications for organic geochemistry in Jezero crater, , 2022 .

[7]  R. Wiens,et al.  INFRARED REFLECTANCE OF ROCKS AND REGOLITH AT JEZERO CRATER: ONE YEAR OF SUPERCAM OBSERVATIONS , 2022 .

[8]  O. Forni,et al.  Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.

[9]  O. Forni,et al.  SuperCam calibration targets on board the perseverance rover: Fabrication and quantitative characterization , 2021, Spectrochimica Acta Part B: Atomic Spectroscopy.

[10]  O. Forni,et al.  The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission , 2021, Icarus.

[11]  E. Cloutis,et al.  Characteristics, Origins, and Biosignature Preservation Potential of Carbonate‐Bearing Rocks Within and Outside of Jezero Crater , 2021, Journal of geophysical research. Planets.

[12]  Linda C. Kah,et al.  Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars , 2021, Science.

[13]  Linda C. Kah,et al.  Stratigraphic Relationships in Jezero Crater, Mars: Constraints on the Timing of Fluvial‐Lacustrine Activity From Orbital Observations , 2021, Journal of Geophysical Research: Planets.

[14]  V. Sautter,et al.  Martian meteorites reflectance and implications for rover missions , 2021, 2203.10051.

[15]  T. Glotch,et al.  Distinct Carbonate Lithologies in Jezero Crater, Mars , 2021, Geophysical research letters.

[16]  A. Doressoundiram,et al.  The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.

[17]  Justin M. McGlown,et al.  The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.

[18]  Linda C. Kah,et al.  Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team , 2020, Space Science Reviews.

[19]  P. Bernardi,et al.  SuperCam Calibration Targets: Design and Development , 2020, Space Science Reviews.

[20]  K. Siebach,et al.  Constraining Ancient Magmatic Evolution on Mars Using Crystal Chemistry of Detrital Igneous Minerals in the Sedimentary Bradbury Group, Gale Crater, Mars , 2020, Journal of Geophysical Research: Planets.

[21]  O. Forni,et al.  Pre-launch radiometric calibration of the infrared spectrometer onboard SuperCam for the Mars2020 rover. , 2020, The Review of scientific instruments.

[22]  C. Herd,et al.  What Martian Meteorites Reveal About the Interior and Surface of Mars , 2020, Journal of Geophysical Research: Planets.

[23]  R. V. Morris,et al.  Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity , 2020 .

[24]  M. Rice,et al.  The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars , 2020, Icarus.

[25]  N. Mangold,et al.  Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars , 2020 .

[26]  C. Viviano,et al.  Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.

[27]  K. Stack,et al.  Geologic map of Jezero crater and the Nili Planum region, Mars , 2020 .

[28]  G. Howarth,et al.  Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars , 2019 .

[29]  R. Clark,et al.  Visible and Near-Infrared Reflectance Spectroscopy , 2019, Remote Compositional Analysis.

[30]  K. Kinch,et al.  Crater Statistics on the Dark‐Toned, Mafic Floor Unit in Jezero Crater, Mars , 2019, Geophysical Research Letters.

[31]  P. Rettberg,et al.  The potential science and engineering value of samples delivered to Earth by Mars sample return , 2019, Meteoritics & Planetary Science.

[32]  C. Herd RECONCILING REDOX : MAKING SPATIAL AND TEMPORAL SENSE OF OXYGEN FUGACITY VARIATIONS IN MARTIAN IGNEOUS ROCKS , 2019 .

[33]  J. Day,et al.  1.34 billion-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites , 2018, Geochimica et Cosmochimica Acta.

[34]  J. Grant,et al.  The science process for selecting the landing site for the 2020 Mars rover , 2018, Planetary and Space Science.

[35]  J. Mustard,et al.  Origin and Emplacement of the Circum-Isidis Olivine-Rich Unit , 2018 .

[36]  M. Golombek,et al.  Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas , 2018, Geophysical research letters.

[37]  M. Salvatore,et al.  The geological history of Northeast Syrtis Major, Mars , 2017 .

[38]  G. Howarth,et al.  Petrogenesis of the NWA 7320 enriched martian gabbroic shergottite: Insight into the martian crust , 2017 .

[39]  K. Nishiizumi,et al.  Two billion years of magmatism recorded from a single Mars meteorite ejection site , 2017, Science Advances.

[40]  J. Head,et al.  Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero crater, Mars and implications for future exploration , 2017 .

[41]  D. Montgomery,et al.  Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits , 2015 .

[42]  L. Richan,et al.  Mode of emplacement of Archean komatiitic tuffs and flows in the Selkirk Bay area, Melville Peninsula, Nunavut, Canada , 2015 .

[43]  F. McCubbin,et al.  Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .

[44]  John F. Mustard,et al.  Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .

[45]  J. M. Bush,et al.  Igneous Layering in Basaltic Magma Chambers , 2015 .

[46]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[47]  Jean-Pierre Bibring,et al.  Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .

[48]  J. Head,et al.  Constraints on the history of open-basin lakes on Mars from the composition and timing of volcanic resurfacing , 2012 .

[49]  M. Forien,et al.  Settling and compaction of olivine in basaltic magmas: an experimental study on the time scales of cumulate formation , 2012, Contributions to Mineralogy and Petrology.

[50]  James W. Head,et al.  An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate , 2012 .

[51]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[52]  J. Filiberto,et al.  Fe2+–Mg partitioning between olivine and basaltic melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior , 2011 .

[53]  F. Felletti,et al.  Validation of Hurst statistics: a predictive tool to discriminate turbiditic sub-environments in a confined basin , 2010 .

[54]  Simon J. Hook,et al.  HYDROTHERMAL FORMATION OF CLAY-CARBONATE ALTERATION ASSEMBLAGES IN THE , 2010, 1402.1150.

[55]  V. Chevrier,et al.  Reflectance Spectra of Low-Temperature Chloride and Perchlorate Hydrates and Their Relevance to the Martian Surface , 2009 .

[56]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[57]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[58]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[59]  M. D. Dyar,et al.  Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas , 2008, Clay Minerals.

[60]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[61]  Dougal A. Jerram,et al.  On estimating crystal shape for crystal size distribution analysis , 2006 .

[62]  James W. Head,et al.  Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region , 2005 .

[63]  Carle M. Pieters,et al.  RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility , 2004 .

[64]  C. Schwandt,et al.  Crystallization conditions of Los Angeles, a basaltic Martian meteorite , 2002 .

[65]  H. Schmincke,et al.  Evolution of palagonite: Crystallization, chemical changes, and element budget , 2001 .

[66]  Michael Denis Higgins,et al.  Measurement of crystal size distributions , 2000 .

[67]  D. Stow,et al.  Deep-water massive sands: nature, origin and hydrocarbon implications , 2000 .

[68]  J. Bridge,et al.  Preservation of planar laminae due to migration of low‐relief bed waves over aggrading upper‐stage plane beds: comparison of experimental data with theory , 1997 .

[69]  Fei Wang,et al.  Preservation of Cross-strata Due to Migration of Subaqueous Dunes Over Aggrading and Non-aggrading Beds: Comparison of Experimental Data with Theory , 1997 .

[70]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[71]  P. Pinet,et al.  Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth‐based near‐infrared telescopic charge‐coupled device imaging , 1990 .

[72]  C. Paola,et al.  Upper‐regime parallel lamination as the result of turbulent sediment transport and low‐amplitude bed forms , 1989 .

[73]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[74]  J. Bédard The Development of Compositional and Textural Layering in Archaean Komatiites and in Proterozoic Komatiitic Basalts from Cape Smith, Québec, Canada , 1987 .

[75]  B. Windley,et al.  Archean Plate Tectonics: Constraints and Inferences , 1982, The Journal of Geology.

[76]  P. E. Potter,et al.  BED THICKNESS AND GRAIN SIZE: GRADED BEDS , 1966 .

[77]  S. Kotsopoulos,et al.  Design and Development , 2015 .