Alternative patterns of the multidimensional Hilbert curve

Locality-preserving (distance preserving-mapping) is a useful property to manage multidimensional data. Close points in space remain -as much as possible- close after mapping on curve. That is why Hilbert space-filling curve is used in many domains and applications. Hilbert curve preserves well locality because from a construction aspect, it is guided by adajacency constraint on points ordering : the curve connects all points of a D-dimensional discrete space, without favoring any direction, under the constrainst that two successive points are separated by an unit distance. Originally defined in 2-D, all existing multidimensional extensions of the Hilbert curve satisfy adjacency by using the RBG pattern (based on Reflected Binary Gray code). The RBG pattern is then duplicated and arranged (geometrical transformations) to build the multidimensional Hilbert curve at a given order. In this paper, we emphasize that there are other patterns that can satisfy the adjacency. A formulation is given, an algorithm to find out solutions is provided and their respective level of locality preservation is estimated through a standard criterion. Results show that some new patterns can carry a comparable levels of locality and sometimes better than RBG. Moreover, selecting the best locality preserving pattern allows one to design, through orders, a new curve with a comparable overall locality preserving refer to Hilbert curve. The contribution of new patterns is experimented through a CBIR (Content-Based Image Retrieval) application. Large-scale image retrieval tests show that exploring the image feature space with an alternative way to the classical Hilbert curve can lead to improved image searching performances.

[1]  H. Sagan Space-filling curves , 1994 .

[2]  Kebin Jia,et al.  An Effective and Fast Retrieval Algorithm for Content-Based Image Retrieval , 2008, 2008 Congress on Image and Signal Processing.

[3]  Khalid M. Hosny,et al.  Fast computation of accurate Zernike moments , 2008, Journal of Real-Time Image Processing.

[4]  Guojun Lu,et al.  Shape-based image retrieval using generic Fourier descriptor , 2002, Signal Process. Image Commun..

[5]  Christos Faloutsos,et al.  Fractals for secondary key retrieval , 1989, PODS.

[6]  Luiz Velho,et al.  Digital halftoning with space filling curves , 1991, SIGGRAPH.

[7]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[8]  I. Jolliffe Principal Component Analysis , 2002 .

[9]  Chih-Fong Tsai,et al.  Bag-of-Words Representation in Image Annotation: A Review , 2012 .

[10]  Yiannis S. Boutalis,et al.  Accurate Image Retrieval Based on Compact Composite Descriptors and Relevance Feedback Information , 2010, Int. J. Pattern Recognit. Artif. Intell..

[11]  A. Hoorfar,et al.  Thin absorbers using space-filling-curve high-impedance surfaces , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[12]  Peter J. H. King,et al.  Using Space-Filling Curves for Multi-dimensional Indexing , 2000, BNCOD.

[13]  G. Peano Sur une courbe, qui remplit toute une aire plane , 1890 .

[14]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[15]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[16]  Maher Ahmed,et al.  A Rotation-Invariant Approach to 2D Shape Representation Using the Hilbert Curve , 2009, ICIAR.

[17]  Michael Bader,et al.  Space-Filling Curves - An Introduction with Applications in Scientific Computing , 2012, Texts in Computational Science and Engineering.

[18]  Xian Liu Four alternative patterns of the Hilbert curve , 2004, Appl. Math. Comput..

[19]  A. Perez,et al.  Peano scanning of arbitrary size images , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[20]  Maher Ahmed,et al.  A View-Based 3D Object Shape Representation Technique , 2007, ICIAR.

[21]  Deok-Hwan Kim,et al.  Relevance feedback using adaptive clustering for image similarity retrieval , 2005, J. Syst. Softw..

[22]  Heung-Kyu Lee,et al.  Re-ranking algorithm using post-retrieval clustering for content-based image retrieval , 2005, Inf. Process. Manag..

[23]  M. Teague Image analysis via the general theory of moments , 1980 .

[24]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[25]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[26]  Guohua Jin,et al.  SFCGen: A framework for efficient generation of multi-dimensional space-filling curves by recursion , 2005, TOMS.

[27]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[28]  Arthur R. Butz,et al.  Convergence with Hilbert's Space Filling Curve , 1969, J. Comput. Syst. Sci..

[29]  Sambhunath Biswas Hilbert scan and image compression , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[30]  김진영,et al.  Locality Preserving Projection을 이용한 공초점 라만스펙트럼의 분석 , 2006 .

[31]  Rémy Mullot,et al.  Mapping high dimensional features onto Hilbert curve: Applying to fast image retrieval , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[32]  Peter J. H. King,et al.  Using state diagrams for hilbert curve mappings , 2001, Int. J. Comput. Math..

[33]  Yu-Chun Wang,et al.  A novel content based image retrieval system using K-means with feature extraction , 2012, ICONS 2012.

[34]  D. Hilbert Ueber die stetige Abbildung einer Line auf ein Flächenstück , 1891 .

[35]  Deepika Nagthane,et al.  Content Based Image Retrieval system Using K-Means Clustering Technique , 2013 .

[36]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[37]  Ye-In Chang,et al.  Neighbor-finding based on space-filling curves , 2005, Inf. Syst..

[38]  Andrew Rau-Chaplin,et al.  Compact Hilbert indices: Space-filling curves for domains with unequal side lengths , 2008, Inf. Process. Lett..

[39]  Robert M. Haralick,et al.  A Statistical, Nonparametric Methodology for Document Degradation Model Validation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Mohan S. Kankanhalli,et al.  Shape Measures for Content Based Image Retrieval: A Comparison , 1997, Inf. Process. Manag..

[41]  Ricardo da Silva Torres,et al.  Image Re-ranking and Rank Aggregation Based on Similarity of Ranked Lists , 2011, CAIP.

[42]  Christos Faloutsos,et al.  Analysis of the Clustering Properties of the Hilbert Space-Filling Curve , 2001, IEEE Trans. Knowl. Data Eng..

[43]  Arthur R. Butz,et al.  Alternative Algorithm for Hilbert's Space-Filling Curve , 1971, IEEE Transactions on Computers.

[44]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[45]  Nikolaos D. Doulamis,et al.  Evaluation of relevance feedback schemes in content-based in retrieval systems , 2006, Signal Process. Image Commun..

[46]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[47]  Hassan Mathkour,et al.  A content based image retrieval using K-means algorithm , 2012, Seventh International Conference on Digital Information Management (ICDIM 2012).

[48]  R. Durbin,et al.  Optimal numberings of an N N array , 1986 .

[49]  Maher Ahmed,et al.  Shape representation and description using the Hilbert curve , 2009, Pattern Recognit. Lett..

[50]  Mehdi Moradian,et al.  Space-filling Patch Antennas with CPW Feed , 2006 .

[51]  Walid G. Aref,et al.  Analysis of Multi-Dimensional Space-Filling Curves , 2003, GeoInformatica.

[52]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[53]  Eli Upfal,et al.  Finding near neighbors through cluster pruning , 2007, PODS '07.

[54]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[55]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..