Multimodal Convergence within the Intraparietal Sulcus of the Macaque Monkey

The parietal cortex is highly multimodal and plays a key role in the processing of objects and actions in space, both in human and nonhuman primates. Despite the accumulated knowledge in both species, we lack the following: (1) a general description of the multisensory convergence in this cortical region to situate sparser lesion and electrophysiological recording studies; and (2) a way to compare and extrapolate monkey data to human results. Here, we use functional magnetic resonance imaging (fMRI) in the monkey to provide a bridge between human and monkey studies. We focus on the intraparietal sulcus (IPS) and specifically probe its involvement in the processing of visual, tactile, and auditory moving stimuli around and toward the face. We describe three major findings: (1) the visual and tactile modalities are strongly represented and activate mostly nonoverlapping sectors within the IPS. The visual domain occupies its posterior two-thirds and the tactile modality its anterior one-third. The auditory modality is much less represented, mostly on the medial IPS bank. (2) Processing of the movement component of sensory stimuli is specific to the fundus of the IPS and coincides with the anatomical definition of monkey ventral intraparietal area (VIP). (3) A cortical sector within VIP processes movement around and toward the face independently of the sensory modality. This amodal representation of movement may be a key component in the construction of peripersonal space. Overall, our observations highlight strong homologies between macaque and human VIP organization.

[1]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[2]  J. Assad,et al.  Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance , 1999, Nature Neuroscience.

[3]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[4]  S. Faugier-Grimaud,et al.  Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo‐ocular function in a monkey (macaca fascicularis) , 1989, The Journal of comparative neurology.

[5]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[6]  Dylan F. Cooke,et al.  Parieto-frontal interactions, personal space, and defensive behavior , 2006, Neuropsychologia.

[7]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. , 1999, Journal of neurophysiology.

[8]  Emad N Eskandar,et al.  Parietal activity and the perceived direction of ambiguous apparent motion , 2003, Nature Neuroscience.

[9]  Leah Krubitzer,et al.  Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys , 2003, The Journal of comparative neurology.

[10]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[11]  S. Sterbing-D’Angelo,et al.  Behavioral/systems/cognitive Multisensory Space Representations in the Macaque Ventral Intraparietal Area , 2022 .

[12]  J. Hyvärinen Posterior parietal lobe of the primate brain. , 1982, Physiological reviews.

[13]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[14]  J. Duhamel,et al.  Multisensory Integration in the Ventral Intraparietal Area of the Macaque Monkey , 2007, The Journal of Neuroscience.

[15]  Hilary W. Heuer,et al.  Parietal Area VIP Neuronal Responses to Heading Stimuli Are Encoded in Head-Centered Coordinates , 2004, Neuron.

[16]  A. Pouget,et al.  Reference frames for representing visual and tactile locations in parietal cortex , 2005, Nature Neuroscience.

[17]  Yale E Cohen,et al.  Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame. , 2009, Cerebral cortex.

[18]  Beng Hong. Goh,et al.  Effects of training. , 2001 .

[19]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[20]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[21]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[22]  O. Grüsser,et al.  Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey , 1994, The Journal of comparative neurology.

[23]  Emad N Eskandar,et al.  Distinct nature of directional signals among parietal cortical areas during visual guidance. , 2002, Journal of neurophysiology.

[24]  Franck Ramus,et al.  Interhemispheric differences in auditory processing revealed by fMRI in awake rhesus monkeys. , 2012, Cerebral cortex.

[25]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[26]  E. DeYoe,et al.  Distinct Cortical Pathways for Processing Tool versus Animal Sounds , 2005, The Journal of Neuroscience.

[27]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[28]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[29]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[30]  R. Andersen,et al.  Comparison of neural activity preceding reaches to auditory and visual stimuli in the parietal reach region , 2002, Neuroreport.

[31]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[32]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[33]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[34]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[35]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[36]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[37]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[38]  Yale E. Cohen,et al.  Spatial and non-spatial auditory processing in the lateral intraparietal area , 2005, Experimental Brain Research.

[39]  Dylan F. Cooke,et al.  Parieto-frontal interactions, personal space, and defensive behavior , 2006, Neuropsychologia.

[40]  L. Krubitzer,et al.  Cortical evolution in mammals: The bane and beauty of phenotypic variability , 2012, Proceedings of the National Academy of Sciences.

[41]  H. Sakata,et al.  Parietal control of hand action , 1994, Current Opinion in Neurobiology.

[42]  R. Andersen,et al.  Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits , 2009, Neuron.

[43]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[44]  J Duysens,et al.  Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. , 1996, Journal of neurophysiology.

[45]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[46]  R. Andersen,et al.  Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. , 1996, Journal of neurophysiology.

[47]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[48]  G. Orban The extraction of 3D shape in the visual system of human and nonhuman primates. , 2011, Annual review of neuroscience.

[49]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[50]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[51]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. , 1999, Journal of neurophysiology.

[52]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[53]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[54]  Frank Bremmer,et al.  Multisensory space: from eye‐movements to self‐motion , 2011, The Journal of physiology.

[55]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.