Free Heyting Algebras: Revisited

We use coalgebraic methods to describe finitely generated free Heyting algebras. Heyting algebras are axiomatized by rank 0-1 axioms. In the process of constructing free Heyting algebras we first apply existing methods to weak Heyting algebras--the rank 1 reducts of Heyting algebras--and then adjust them to the mixed rank 0-1 axioms. On the negative side, our work shows that one cannot use arbitrary axiomatizations in this approach. Also, the adjustments made for the mixed rank axioms are not just purely equational, but rely on properties of implication as a residual. On the other hand, the duality and coalgebra perspectives do allow us, in the case of Heyting algebras, to derive Ghilardi's (Ghilardi, 1992) powerful representation of finitely generated free Heyting algebras in a simple, transparent, and modular way using Birkhoff duality for finite distributive lattices.

[1]  Alexander Kurz,et al.  Coalgebraic modal logic of finite rank , 2005, Math. Struct. Comput. Sci..

[2]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[3]  Yde Venema,et al.  Algebras and coalgebras , 2007, Handbook of Modal Logic.

[4]  Silvio Ghilardi,et al.  Sheaves, games, and model completions - a categorical approach to nonclassical propositional logics , 2011, Trends in logic.

[5]  Carsten Butz,et al.  Finitely Presented Heyting Algebras , 1998 .

[6]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, LICS.

[7]  Marek W. Zawadowski,et al.  Sheaves, games, and model completions , 2002 .

[8]  Brunella Gerla,et al.  Gödel algebras free over finite distributive lattices , 2008, Ann. Pure Appl. Log..

[9]  Alexander Kurz,et al.  The Goldblatt-Thomason Theorem for Coalgebras , 2007, CALCO.

[10]  Nick Bezhanishvili,et al.  Lattices of intermediate and cylindric modal logics , 2006 .

[11]  Samson Abramsky,et al.  A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.

[12]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[13]  Mai Gehrke,et al.  Distributive Lattice-Structured Ontologies , 2009, CALCO.

[14]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[15]  Ramon Jansana,et al.  Bounded distributive lattices with strict implication , 2005, Math. Log. Q..

[16]  Alexander Kurz,et al.  Free Modal Algebras: A Coalgebraic Perspective , 2007, CALCO.

[17]  Alexander Kurz,et al.  Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings , 2009, CALCO.

[18]  Silvio Ghilardi,et al.  An Algebraic Theory of Normal Forms , 1995, Ann. Pure Appl. Log..

[19]  Dirk Pattinson,et al.  Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics , 2008, FoSSaCS.

[20]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[21]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.