Glutamatergic Neurotransmission in the Hippocampus

This chapter will summarize key data about glutamatergic transmission in the hippocampus. Glutamate is the major excitatory neurotransmitter similar to other CNS regions. Biophysical properties of various receptors and channels will be described and functional relevance of these parameters discussed.

[1]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[2]  P. Somogyi,et al.  A High Degree of Spatial Selectivity in the Axonal and Dendritic Domains of Physiologically Identified Local‐circuit Neurons in the Dentate Gyms of the Rat Hippocampus , 1993, The European journal of neuroscience.

[3]  U. Heinemann,et al.  The perforant path projection to hippocampal area CA1 in the rat hippocampal‐entorhinal cortex combined slice. , 1995, The Journal of physiology.

[4]  R. Mcinnes,et al.  Neto1 Is an Auxiliary Subunit of Native Synaptic Kainate Receptors , 2011, The Journal of Neuroscience.

[5]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[6]  K. Roche,et al.  mGluR7 undergoes rapid internalization in response to activation by the allosteric agonist AMN082 , 2007, Neuropharmacology.

[7]  J J Jack,et al.  Quantal analysis of excitatory synapses in rat hippocampal CA1 In Vitro during low‐frequency depression , 1997, The Journal of physiology.

[8]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[9]  G. Collingridge,et al.  Regulation of glutamate release by presynaptic kainate receptors in the hippocampus , 1996, Nature.

[10]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[11]  M. Raastad,et al.  Diversity of Postsynaptic Amplitude and Failure Probability of Unitary Excitatory Synapses between CA3 and CA1 Cells in the Rat Hippocampus , 1996, The European journal of neuroscience.

[12]  Chiayu Q. Chiu,et al.  Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus , 2008, Neuropharmacology.

[13]  K. Roche,et al.  mGluR7 Is a Metaplastic Switch Controlling Bidirectional Plasticity of Feedforward Inhibition , 2005, Neuron.

[14]  Y. Yaari,et al.  Kinetic properties of NMDA receptor‐mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones. , 1993, The Journal of physiology.

[15]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[16]  Harrison C. Walker,et al.  Activation of Kinetically Distinct Synaptic Conductances on Inhibitory Interneurons by Electrotonically Overlapping Afferents , 2002, Neuron.

[17]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[18]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  M. E. Corcoran,et al.  Pathway specificity of noradrenergic plasticity in the dentate gyrus , 1994, Hippocampus.

[20]  P. Ritch,et al.  Novel glial‐neuronal signalling by coactivation of metabotropic glutamate and beta‐adrenergic receptors in rat hippocampus. , 1996, The Journal of physiology.

[21]  R. Dingledine,et al.  Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. , 1996, The Journal of pharmacology and experimental therapeutics.

[22]  R. Wenthold,et al.  Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Zachary M Grinspan,et al.  Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus , 2004, The Journal of physiology.

[24]  P. Jonas,et al.  A large pool of releasable vesicles in a cortical glutamatergic synapse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[26]  P. Stanton,et al.  BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses , 2006, The Journal of physiology.

[27]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[28]  N. Spruston,et al.  Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons , 2005, Nature Neuroscience.

[29]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[30]  G. Collingridge,et al.  The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus , 1998, Neuropharmacology.

[31]  D. Kullmann Amplitude fluctuations of , 1994, Neuron.

[32]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[33]  R. Nicoll,et al.  Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses , 2000, Neuron.

[34]  R. Nicoll,et al.  The Expanding Social Network of Ionotropic Glutamate Receptors: TARPs and Other Transmembrane Auxiliary Subunits , 2011, Neuron.

[35]  D. Kullmann,et al.  Long-term potentiation and dual-component quantal signaling in the dentate gyrus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Heinemann,et al.  Kainate Receptors Are Involved in Short- and Long-Term Plasticity at Mossy Fiber Synapses in the Hippocampus , 2001, Neuron.

[37]  Daniel Johnston,et al.  Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism , 1999, Nature Neuroscience.

[38]  I. Soltesz,et al.  Postsynaptic origin of CB1‐dependent tonic inhibition of GABA release at cholecystokinin‐positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus , 2007, The Journal of physiology.

[39]  G. Collingridge,et al.  The synaptic activation of kainate receptors , 1997, Nature.

[40]  D. Perrais,et al.  Short-Term Plasticity of Kainate Receptor-Mediated EPSCs Induced by NMDA Receptors at Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[41]  S. Tomita,et al.  Two Families of TARP Isoforms that Have Distinct Effects on the Kinetic Properties of AMPA Receptors and Synaptic Currents , 2007, Neuron.

[42]  R. Nicoll,et al.  Probing TARP Modulation of AMPA Receptor Conductance with Polyamine Toxins , 2011, The Journal of Neuroscience.

[43]  Jörg R P Geiger,et al.  Timing and Efficacy of Ca2+ Channel Activation in Hippocampal Mossy Fiber Boutons , 2002, The Journal of Neuroscience.

[44]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[45]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[46]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[47]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[48]  C. Mulle,et al.  Kainate Receptors Act as Conditional Amplifiers of Spike Transmission at Hippocampal Mossy Fiber Synapses , 2009, The Journal of Neuroscience.

[49]  L. Dobrunz,et al.  Presynaptic Kainate Receptor Activation Is a Novel Mechanism for Target Cell-Specific Short-Term Facilitation at Schaffer Collateral Synapses , 2006, The Journal of Neuroscience.

[50]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[51]  David Lodge,et al.  A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP , 2001, Neuron.

[52]  C. Mulle,et al.  Distinct Subunits in Heteromeric Kainate Receptors Mediate Ionotropic and Metabotropic Function at Hippocampal Mossy Fiber Synapses , 2005, The Journal of Neuroscience.

[53]  J. Delgado-García,et al.  Contribution of NMDA receptor NR2B subunit to synaptic plasticity during associative learning in behaving rats , 2007, The European journal of neuroscience.

[54]  Alan Fine,et al.  Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis , 2009, Neuron.

[55]  D. Schmitz,et al.  Assessing the Role of GLUK5 and GLUK6 at Hippocampal Mossy Fiber Synapses , 2004, The Journal of Neuroscience.

[56]  B. Gähwiler,et al.  G-protein-independent signaling mediated by metabotropic glutamate receptors , 1999, Nature Neuroscience.

[57]  J. Lacaille,et al.  Selective induction of metabotropic glutamate receptor 1– and metabotropic glutamate receptor 5–dependent chemical long-term potentiation at oriens/alveus interneuron synapses of mouse hippocampus , 2008, Neuroscience.

[58]  K. Harris,et al.  Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. , 2002, Journal of neurophysiology.

[59]  D. Kullmann,et al.  Modulation of GABAergic Signaling among Interneurons by Metabotropic Glutamate Receptors , 2000, Neuron.

[60]  R. Huganir,et al.  Developmental Expression of Ca2+-Permeable AMPA Receptors Underlies Depolarization-Induced Long-Term Depression at Mossy Fiber–CA3 Pyramid Synapses , 2007, The Journal of Neuroscience.

[61]  P. Jonas,et al.  Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. , 1995, The Journal of physiology.

[62]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[63]  Eduardo Calixto,et al.  Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons , 2008, The Journal of physiology.

[64]  J. Lacaille,et al.  mGluR1/5 subtype‐specific calcium signalling and induction of long‐term potentiation in rat hippocampal oriens/alveus interneurones , 2006, The Journal of physiology.

[65]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[66]  R. S. Jones,et al.  A reevaluation of excitatory amino acid-mediated synaptic transmission in rat dentate gyrus. , 1990, Journal of neurophysiology.

[67]  C. Mulle,et al.  GluR6/KA2 Kainate Receptors Mediate Slow-Deactivating Currents , 2008, The Journal of Neuroscience.

[68]  D. Henze,et al.  Large amplitude miniature excitatory postsynaptic currents in hippocampal CA3 pyramidal neurons are of mossy fiber origin. , 1997, Journal of neurophysiology.

[69]  R. Anwyl,et al.  Presynaptic group II mGluR inhibition of short-term depression in the medial perforant path of the dentate gyrus in vitro. , 2001, Journal of neurophysiology.

[70]  B. Sakmann,et al.  Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression , 1994, Neuron.

[71]  R. Greene,et al.  Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell , 2004, British journal of pharmacology.

[72]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[73]  Paul Antoine Salin,et al.  Distinct short-term plasticity at two excitatory synapses in the hippocampus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[75]  V. O'Connor,et al.  Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. , 1999, Science.

[76]  R. Nicoll,et al.  TARP Subtypes Differentially and Dose-Dependently Control Synaptic AMPA Receptor Gating , 2007, Neuron.

[77]  M. Capogna,et al.  Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare , 2005, Neuropharmacology.

[78]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[79]  B. L. McNaughton,et al.  Evidence for two physiologically distinct perforant pathways to the fascia dentata , 1980, Brain Research.

[80]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[81]  G. Barrionuevo,et al.  Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. , 1998, Journal of neurophysiology.

[82]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[83]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[84]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.

[85]  Hyung-Bae Kwon,et al.  Long-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[86]  R. Cossart,et al.  Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons , 2001, Neuron.

[87]  D. Winder,et al.  Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. , 1996, Journal of neurophysiology.

[88]  P. Jonas,et al.  Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors , 2009, Science.

[89]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[90]  Fred H. Gage,et al.  Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice , 1998, Nature.

[91]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[92]  R. Nicoll,et al.  Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses , 2001, Science.

[93]  S. Nakanishi,et al.  A family of metabotropic glutamate receptors , 1992, Neuron.

[94]  Rosa Cossart,et al.  Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons , 2002, Neuron.

[95]  Young Ho Suh,et al.  Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating , 2010, Proceedings of the National Academy of Sciences.

[96]  Masahiko Watanabe,et al.  Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre‐recipient layer) of the mouse hippocampal CA3 subfield , 1998, The European journal of neuroscience.

[97]  Mikyoung Park,et al.  Recycling Endosomes Supply AMPA Receptors for LTP , 2004, Science.

[98]  R. Dingledine,et al.  Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. , 1993, The Journal of physiology.

[99]  R. Empson,et al.  Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal‐entorhinal cortex combined slice preparation , 1995, Hippocampus.

[100]  M. Farrant,et al.  Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5 , 2009, Nature Neuroscience.

[101]  L. Dobrunz,et al.  Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. , 2009, Journal of neurophysiology.

[102]  S. Heinemann,et al.  Distribution of Kainate Receptor Subunits at Hippocampal Mossy Fiber Synapses , 2003, The Journal of Neuroscience.

[103]  Dietmar Schmitz,et al.  Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation , 2003, Nature Neuroscience.

[104]  R. Petralia,et al.  Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies , 1994, The Journal of comparative neurology.

[105]  D. Amaral,et al.  Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions , 1981, The Journal of comparative neurology.

[106]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[107]  S. Heinemann,et al.  GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses , 2007, Proceedings of the National Academy of Sciences.

[108]  C. McBain,et al.  Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses , 2002, Neuron.

[109]  M. Masu,et al.  Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4 , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[111]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[112]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[113]  B. Sakmann,et al.  Quantal analysis of excitatory postsynaptic currents at the hippocampal mossy fiber-CA3 pyramidal cell synapse. , 1994, Advances in second messenger and phosphoprotein research.

[114]  G. Collingridge,et al.  Roles of metabotropic glutamate receptors in LTP and LTD in , 1999, Current Opinion in Neurobiology.

[115]  K. Harris,et al.  Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses , 1995, Neuropharmacology.

[116]  A. Contractor,et al.  Attenuated Plasticity of Postsynaptic Kainate Receptors in Hippocampal CA3 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[117]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[118]  A. Konnerth,et al.  A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[119]  H. Adesnik,et al.  Stargazin modulates AMPA receptor gating and trafficking by distinct domains , 2005, Nature.

[120]  M. Capogna Distinct properties of presynaptic group II and III metabotropic glutamate receptor‐mediated inhibition of perforant pathway–CA1 EPSCs , 2004, The European journal of neuroscience.

[121]  R. Nicoll,et al.  Kainate Receptors Depress Excitatory Synaptic Transmission at CA3→CA1 Synapses in the Hippocampus via a Direct Presynaptic Action , 2001, The Journal of Neuroscience.

[122]  K. Tóth,et al.  Target‐specific expression of pre‐ and postsynaptic mechanisms , 2000, The Journal of physiology.

[123]  W B Levy,et al.  Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. , 1992, Journal of neurophysiology.

[124]  R. Wenthold,et al.  The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  Hyung-Bae Kwon,et al.  Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[126]  R. Anwyl,et al.  Presynaptic group III mGluR modulation of short-term plasticity in the lateral perforant path of the dentate gyrus in vitro , 2002, Brain Research.

[127]  M. Frerking,et al.  AMPA Receptors and Kainate Receptors Encode Different Features of Afferent Activity , 2002, The Journal of Neuroscience.

[128]  P. Conn,et al.  Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1 , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  R. Cunha,et al.  Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[130]  L. Dobrunz,et al.  Developmental decrease in short-term facilitation at Schaffer collateral synapses in hippocampus is mGluR1 sensitive. , 2008, Journal of neurophysiology.

[131]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[132]  K M Harris,et al.  Three‐dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus , 1992, The Journal of comparative neurology.

[133]  S. Heinemann,et al.  Loss of Kainate Receptor-Mediated Heterosynaptic Facilitation of Mossy-Fiber Synapses in KA2−/− Mice , 2003, The Journal of Neuroscience.

[134]  J. Lambert,et al.  Activation of N-methyl-d-aspartate receptors contributes to the EPSP at perforant path synapses in the rat dentate gyrus in vitro , 1989, Neuroscience Letters.

[135]  Sunjeev K Kamboj,et al.  Intracellular spermine confers rectification on rat calcium‐permeable AMPA and kainate receptors. , 1995, The Journal of physiology.

[136]  H. Kamiya,et al.  Kainate receptor‐mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus , 1998, The Journal of physiology.

[137]  Robert C. Malenka,et al.  Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons , 1997, Nature.

[138]  J. Sarvey,et al.  Norepinephrine induces pathway-specific long-lasting potentiation and depression in the hippocampal dentate gyrus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[139]  David L. Hunt,et al.  Unique functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1 , 2011, Nature Neuroscience.

[140]  C. Cotman,et al.  Carbachol depresses synaptic responses in the medial but not the lateral perforant path , 1989, Brain Research.

[141]  Y. Ben-Ari,et al.  GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells , 1998, Nature Neuroscience.

[142]  H. Shinozaki,et al.  Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. , 1996, The Journal of physiology.

[143]  Ayae Kinoshita,et al.  Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus , 1997, The Journal of Neuroscience.

[144]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[145]  Michael Frotscher,et al.  Structural Determinants of Transmission at Large Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[146]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[147]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[148]  M A Rogawski,et al.  Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[149]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[150]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[151]  J. Lisman,et al.  Pathway-Specific Properties of AMPA and NMDA-Mediated Transmission in CA1 Hippocampal Pyramidal Cells , 2002, The Journal of Neuroscience.