A cuttable multi-touch sensor

We propose cutting as a novel paradigm for ad-hoc customization of printed electronic components. As a first instantiation, we contribute a printed capacitive multi-touch sensor, which can be cut by the end-user to modify its size and shape. This very direct manipulation allows the end-user to easily make real-world objects and surfaces touch-interactive, to augment physical prototypes and to enhance paper craft. We contribute a set of technical principles for the design of printable circuitry that makes the sensor more robust against cuts, damages and removed areas. This includes novel physical topologies and printed forward error correction. A technical evaluation compares different topologies and shows that the sensor remains functional when cut to a different shape.

[1]  Pedro Lopes,et al.  Interactive construction: interactive fabrication of functional mechanical devices , 2012, UIST.

[2]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[3]  Giuseppe Di Battista,et al.  26 Computer Networks , 2004 .

[4]  Scott E. Hudson,et al.  Rapid construction of functioning physical interfaces from cardboard, thumbtacks, tin foil and masking tape , 2006, UIST.

[5]  Xiang Cao,et al.  Grips and gestures on a multi-touch pen , 2011, CHI.

[6]  Barbara Stadlober,et al.  PyzoFlex: printed piezoelectric pressure sensing foil , 2012, UIST.

[7]  Joseph A. Paradiso,et al.  ChainMail: a configurable multimodal lining to enable sensate surfaces and interactive objects , 2010, TEI '10.

[8]  Mark D. Gross,et al.  Interactive fabrication: new interfaces for digital fabrication , 2010, TEI.

[9]  Lynne Boddy,et al.  Network Organisation of Mycelial Fungi , 2007 .

[10]  Ken Perlin,et al.  The UnMousePad: the future of touch sensing , 2009, SIGGRAPH Posters.

[11]  Patrick Baudisch,et al.  Modular and deformable touch-sensitive surfaces based on time domain reflectometry , 2011, UIST.

[12]  Hans-Werner Gellersen,et al.  A malleable control structure for softwired user interfaces , 2007, Tangible and Embedded Interaction.

[13]  R. Österbacka,et al.  Paper Electronics , 2011, Advanced materials.

[14]  Andreas Butz,et al.  Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink , 2012, Tangible and Embedded Interaction.

[15]  Jie Qi,et al.  Animating paper using shape memory alloys , 2012, CHI.

[16]  Joseph A. Paradiso,et al.  Sensate Media — Multimodal Electronic Skins as Dense Sensor Networks , 2004 .

[17]  Michael S. Bernstein,et al.  Reflective physical prototyping through integrated design, test, and analysis , 2006, UIST.

[18]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[19]  Roel Vertegaal,et al.  TactileTape: low-cost touch sensing on curved surfaces , 2011, UIST '11 Adjunct.

[20]  Joseph A. Paradiso,et al.  Z-Tiles: building blocks for modular, pressure-sensing floorspaces , 2004, CHI EA '04.

[21]  Gregory D. Abowd,et al.  Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices , 2013, UbiComp.

[22]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[23]  Xiang Cao,et al.  Mouse 2.0: multi-touch meets the mouse , 2009, UIST '09.

[24]  Jun Rekimoto,et al.  SmartSkin: an infrastructure for freehand manipulation on interactive surfaces , 2002, CHI.

[25]  Gerardo Barroeta Pérez,et al.  S.N.A.K.E.: A Dynamically Reconfigurable Artificial Sensate Skin , 2006 .

[26]  François Guimbretière,et al.  FlexAura: a flexible near-surface range sensor , 2012, UIST '12.