Improving the speed of volumetric density map generation via cubic spline interpolation.

Visualizing data generated from molecular dynamics simulations can be difficult, particularly when there can be thousands to millions of trajectory frames. The creation of a 3D grid of atomic density (i.e. a volumetric map) is one way to easily view the long-time average behavior of a system. One way to generate volumetric maps is by approximating each atom with a Gaussian function centered on that atom and spread over neighboring grid cells. However the calculation of the Gaussian function requires evaluation of the exponential function, which is computationally costly. Here we report on speeding up the calculation of volumetric maps from molecular dynamics trajectory data by replacing the expensive exponential function evaluation with an approximation using interpolating cubic splines. We also discuss the errors involved in this approximation, and recommend settings for volumetric map creation based on this.

[1]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[2]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[3]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[4]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[5]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[6]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[7]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[8]  Klaus Schulten,et al.  Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories , 2012, EuroVis.

[9]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[10]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[11]  Klaus Schulten,et al.  GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. , 2014, Faraday discussions.

[12]  Bernard R Brooks,et al.  A protocol for preparing explicitly solvated systems for stable molecular dynamics simulations. , 2020, The Journal of chemical physics.

[13]  Nicol N. Schraudolph,et al.  A Fast, Compact Approximation of the Exponential Function , 1999, Neural Computation.

[14]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[15]  Camilo Aponte-Santamaría,et al.  GROmaρs: A GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics Simulations. , 2019, Biophysical journal.

[16]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[17]  Guanglei Cui,et al.  SPAM: A Simple Approach for Profiling Bound Water Molecules. , 2013, Journal of chemical theory and computation.

[18]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[19]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[20]  Michael K Gilson,et al.  Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. , 2012, The Journal of chemical physics.

[21]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[22]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[23]  Alexander D. MacKerell,et al.  A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides , 1997, J. Comput. Chem..

[24]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[25]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[26]  T. Cheatham,et al.  Divalent Ion Dependent Conformational Changes in an RNA Stem-Loop Observed by Molecular Dynamics , 2016, Journal of chemical theory and computation.

[27]  David R. Klug,et al.  Large and Fast Relaxations inside a Protein: Calculation and Measurement of Reorganization Energies in Alcohol Dehydrogenase , 2002 .

[28]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[29]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[30]  Daniel R. Roe,et al.  Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data , 2018, J. Comput. Chem..

[31]  Daniel R. Roe,et al.  The Impact of Heterogeneous Computing on Workflows for Biomolecular Simulation and Analysis , 2015, Computing in Science & Engineering.

[32]  Diwakar Shukla,et al.  To milliseconds and beyond: challenges in the simulation of protein folding. , 2013, Current opinion in structural biology.