On the Existence and Uniqueness of the Maximum Likelihood Estimate of a Vector-Valued Parameter in Fixed-Size Samples

The maximum likelihood estimate is shown to exist and to be unique if a twice continuously differentiable likelihood function is constant on the boundary of the parameter space and if the Hessian matrix is negative definite whenever the gradient vector vanishes. The condition of constancy on the boundary cannot be completely removed, cf. Tarone and Gruenhage (1975). The theory is illustrated with several examples.

[1]  V. S. Huzurbazar On a property of distributions admitting sufficient statistics. , 1949, Biometrika.

[2]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[3]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[4]  Pike Mc,et al.  A method of analysis of a certain class of experiments in carcinogenesis. , 1966 .

[5]  V. Barnett Evaluation of the maximum-likelihood estimator where the likelihood equation has multiple roots. , 1966, Biometrika.

[6]  James Eells,et al.  Singularities of Smooth Maps , 1967 .

[7]  G. Styan Hadamard products and multivariate statistical analysis , 1973 .

[8]  B. Turnbull Nonparametric Estimation of a Survivorship Function with Doubly Censored Data , 1974 .

[9]  Howard E. Rockette,et al.  Maximum Likelihood Estimation with the Weibull Model , 1974 .

[10]  J. B. Copas,et al.  On the unimodality of the likelihood for the Cauchy distribution , 1975 .

[11]  Gary Gruenhage,et al.  A Note on the Uniqueness of Roots of the Likelihood Equations for Vector-Valued Parameters , 1975 .

[12]  A note on the determination of the nature of turning points of likelihoods , 1976 .

[13]  R. W. Wedderburn,et al.  On the existence and uniqueness of the maximum likelihood estimates for certain generalized linear models , 1976 .

[14]  F. Pukelsheim,et al.  Nonnegative Definiteness of the Estimated Dispersion Matrix in a Multivariate Linear Model , 1978 .

[15]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[16]  J. Burridge,et al.  A Note on Maximum Likelihood Estimation for Regression Models using Grouped Data , 1981 .