Scanning tunneling microscopy investigation of 2H-MoS_2: A layered semiconducting transition‐metal dichalcogenide

Scanning tunneling microscopy (STM) has been enormously successful in solving several important problems in the geometric and electronic structure of homogeneous metallic and semiconducting surfaces. A central question which remains to be answered with respect to the study of compound surfaces, however, is the extent to which the chemical identity of constituent atoms may be established. Recently, progress in this area was made by Feenstra et al. who succeeded in selectively imaging either Ga or As atoms on the GaAs (110) surface. So far this is the only case where such selectivity has been achieved. In an effort to add to our understanding of compound surface imaging we have undertaken a vacuum STM study of 2H-MoS_2, a material which has two structurally and electronically different atomic species at its surface.