Design of medium carbon steels by computational intelligence techniques

Steel design with the targeted properties is a challenging task due to the involvement of many variables and their complex interactions. Artificial neural networks (ANN) recognized for representing the complex relationships and genetic algorithms (GA) are successful for optimization of many real world problems. ANN has been used to identify the relative importance of variables those control the mechanical properties of medium carbon steels. We propose the combination of ANN and GA to optimize composition and heat treatment parameters for the desired mechanical properties. The trained ANN model was used as a fitness function and also as a predictive model. The predicted properties were realistic and higher for the model suggested with the optimum combination of composition and heat treatment variables. The proposed framework is expected to be useful in reducing the experiments required for designing new steels.

[1]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[2]  Pau Klein,et al.  San Francisco, California , 2007 .

[3]  Z. Y. Wang,et al.  Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel , 2008 .

[4]  Xiong Ma,et al.  Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm , 2011 .

[5]  H. K. D. H. Bhadeshia,et al.  Computational Design of Advanced Steels , 2014 .

[6]  Dibyendu Chakravarty,et al.  Optimizing mechanical properties of spark plasma sintered ZTA using neural network and genetic algorithm , 2011 .

[7]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[8]  Nirupam Chakraborti,et al.  Data‐Driven Pareto Optimization for Microalloyed Steels Using Genetic Algorithms , 2012 .

[9]  A. H. Mahmoudi,et al.  Parameter determination of Chaboche kinematic hardening model using a multi objective Genetic Algorithm , 2011 .

[10]  Nirupam Chakraborti,et al.  Genetic algorithms in materials design and processing , 2004 .

[11]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[12]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[13]  Eric F Darve,et al.  Method and Advantages of Genetic Algorithms in Parameterization of Interatomic Potentials: Metal-Oxides , 2013, 1306.1196.

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  David J. C. MacKay,et al.  Design of New Creep-Resistant Nickel-Base Superalloys for Power-Plant Applications , 1999 .

[16]  T. Sadowski,et al.  Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method , 2014 .

[17]  Joseph R. Davis,et al.  Properties and selection : irons, steels, and high-performance alloys , 1995 .

[18]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[19]  Barend J. Thijsse,et al.  Using artificial neural networks to predict grain boundary energies , 2014 .

[20]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[21]  Nader Nariman-zadeh,et al.  Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV , 2010 .

[22]  Zhengyi Jiang,et al.  Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network , 2014 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  N. Castin,et al.  Predicting vacancy migration energies in lattice-free environments using artificial neural networks , 2014 .

[25]  Kevin Swingler,et al.  Applying neural networks - a practical guide , 1996 .

[26]  G. H. Daneshi,et al.  Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel , 2008 .

[27]  Seong-Gu Hong,et al.  Modeling medium carbon steels by using artificial neural networks , 2009 .

[28]  Börje Johansson,et al.  Stainless steel optimization from quantum mechanical calculations , 2003, Nature materials.

[29]  Z. Guo,et al.  Modelling beta transus temperature of titanium alloys using artificial neural network , 2005 .

[30]  Matthew S. Dargusch,et al.  Determination of the influence of processing parameters on the mechanical properties of the Ti-6Al-4V alloy using an artificial neural network , 2012 .

[31]  Nirupam Chakraborti,et al.  Data-Driven Multiobjective Analysis of Manganese Leaching from Low Grade Sources Using Genetic Algorithms, Genetic Programming, and Other Allied Strategies , 2011 .

[32]  B. S. Murty,et al.  Prediction of grain size of Al–7Si Alloy by neural networks , 2005 .

[33]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[34]  Subhas Ganguly,et al.  Designing High Strength Multi-phase Steel for Improved Strength-Ductility Balance Using Neural Networks and Multi-objective Genetic Algorithms , 2007 .

[35]  British Iron,et al.  The mechanical and physical properties of the British Standard En steels (B.S. 970-1955) , 1964 .

[36]  H. K. D. H. Bhadeshia,et al.  The yield and ultimate tensile strength of steel welds , 1997 .