Nonbinary quantum Reed-Muller codes

We construct nonbinary quantum codes from classical generalized Reed-Muller codes and derive the conditions under which these quantum codes can be punctured. We provide a partial answer to a question raised by Grassl, Beth and Rotteler on the existence of q-ary quantum MDS codes of length n with q les n les q2 - 1

[1]  E. F. Assmus POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .

[2]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[3]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[4]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[5]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[6]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[7]  Xin-Wen Wu,et al.  List decoding of q-ary Reed-Muller codes , 2004, IEEE Transactions on Information Theory.

[8]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[9]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[10]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[11]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[12]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..