Bar Induction is Compatible with Constructive Type Theory

Powerful yet effective induction principles play an important role in computing, being a paramount component of programming languages, automated reasoning, and program verification systems. The Bar Induction (BI) principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of transfinite induction. In this work, we investigate the compatibility of several variants of BI with Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We first show that CTT is compatible with a BI principle for sequences of numbers. Then, we establish the compatibility of CTT with a more general BI principle for sequences of name-free closed terms. The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding BI, such as the non-truncated version of BI on monotone bars being intuitionistically false. These enhancements are carried out formally using the Nuprl proof assistant that implements CTT and the formalization of CTT within the Coq proof assistant presented in previous works.

[1]  Helmut Schwichtenberg,et al.  On bar recursion of types 0 and 1 , 1979, Journal of Symbolic Logic.

[2]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[3]  Paulo Oliva,et al.  On Spector's bar recursion , 2012, Math. Log. Q..

[4]  Christine Paulin-Mohring,et al.  Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.

[5]  Andrew M. Pitts,et al.  Nominal Logic: A First Order Theory of Names and Binding , 2001, TACS.

[6]  Mark Bickford,et al.  A Type Theory with Partial Equivalence Relations as Types , 2014 .

[7]  Georg Kreisel,et al.  Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.

[8]  Valentin Blot Hybrid realizability for intuitionistic and classical choice , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[9]  Wim Veldman,et al.  Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative , 2011, Archive for Mathematical Logic.

[10]  Georg Kreisel,et al.  A remark on free choice sequences and the topological completeness proofs , 1958, Journal of Symbolic Logic.

[11]  D. Dalen,et al.  Brouwer's Cambridge Lectures on Intuitionism , 1981 .

[12]  Mark Bickford,et al.  Unguessable Atoms: A Logical Foundation for Security , 2008, VSTTE.

[13]  A. Troelstra,et al.  Formal systems for some branches of intuitionistic analysis , 1970 .

[14]  Mark Bickford,et al.  Formal Program Optimization in Nuprl Using Computational Equivalence and Partial Types , 2013, ITP.

[15]  Thierry Coquand,et al.  On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.

[16]  Martín Hötzel Escardó,et al.  A Constructive Model of Uniform Continuity , 2013, TLCA.

[17]  Thierry Coquand,et al.  The Independence of Markov's Principle in Type Theory , 2016, Log. Methods Comput. Sci..

[18]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[19]  Edwin Brady,et al.  IDRIS ---: systems programming meets full dependent types , 2011, PLPV '11.

[20]  Hajime Ishihara,et al.  Brouwer's fan theorem and unique existence in constructive analysis , 2005, Math. Log. Q..

[21]  Mark Bickford,et al.  Innovations in computational type theory using Nuprl , 2006, J. Appl. Log..

[22]  Bezem,et al.  Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics , 1993 .

[23]  Abhishek Anand,et al.  Towards a Formally Verified Proof Assistant , 2014, ITP.

[24]  A. Troelstra Choice sequences : a chapter of intuitionistic mathematics , 1977 .

[25]  Thomas Powell,et al.  On bar recursive interpretations of analysis , 2013 .

[26]  Martín Hötzel Escardó,et al.  Bar Recursion and Products of Selection Functions , 2015, J. Symb. Log..

[27]  Douglas J. Howe On computational open-endedness in Martin-Lof's type theory , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[28]  Xavier Leroy,et al.  Formal certification of a compiler back-end or: programming a compiler with a proof assistant , 2006, POPL '06.

[29]  Hajime Ishihara Weak König's Lemma Implies Brouwer's Fan Theorem: A Direct Proof , 2006, Notre Dame J. Formal Log..

[30]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[31]  Ulf Norell,et al.  A Brief Overview of Agda - A Functional Language with Dependent Types , 2009, TPHOLs.

[32]  A. S. Troelstra,et al.  A note on non-extensional operations in connection with continuity and recursiveness , 1977 .

[33]  Ulrich Amsel,et al.  Elements Of Intuitionism , 2016 .

[34]  P. Mendler Inductive Definition in Type Theory , 1988 .

[35]  Dirk van Dalen,et al.  Arguments for the continuity principle , 1999, Bull. Symb. Log..

[36]  Hajime Ishihara,et al.  Reverse Mathematics in Bishop’s Constructive Mathematics , 2006 .

[37]  Martín Hötzel Escardó,et al.  The Inconsistency of a Brouwerian Continuity Principle with the Curry-Howard Interpretation , 2015, TLCA.

[38]  Stuart F. Allen,et al.  An Abstract Semantics for Atoms in Nuprl , 2006 .

[39]  Vincent Rahli,et al.  Exercising Nuprl's Open-Endedness , 2016, ICMS.

[40]  Jeremy Avigad,et al.  The Lean Theorem Prover (System Description) , 2015, CADE.

[41]  Valentin Blot,et al.  An interpretation of system F through bar recursion , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[42]  Ieke Moerdijk,et al.  Sheaf models for choice sequences , 1984, Ann. Pure Appl. Log..

[43]  Douglas J. Howe Importing Mathematics from HOL into Nuprl , 1996, TPHOLs.

[44]  S. C. Kleene,et al.  The foundations of intuitionistic mathematics : especially in relation to recursive functions , 1965 .

[45]  Douglas J. Howe Semantic Foundations for Embedding HOL in Nuprl , 1996, AMAST.

[46]  Michael Norrish,et al.  seL4: formal verification of an OS kernel , 2009, SOSP '09.

[47]  Aleksey Nogin,et al.  Markov's Principle for Propositional Type Theory , 2001, CSL.

[48]  Zhong Shao,et al.  CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels , 2016, OSDI.

[49]  C. Luther,et al.  INDEPENDENCE OF THE CONTINUUM HYPOTHESIS , 2009 .

[50]  Michael Rathjen,et al.  The role of parameters in bar rule and bar induction , 1991, Journal of Symbolic Logic.

[51]  W. A. Howard,et al.  Functional interpretation of bar induction by bar recursion , 1968 .

[52]  Marc Bezem Equivalence of bar recursors in the theory of functionals of finite type , 1988, Arch. Math. Log..

[53]  Richard Vesley,et al.  Realizing Brouwer's Sequences , 1996, Ann. Pure Appl. Log..

[54]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[55]  Josef Berger,et al.  The Fan Theorem and Uniform Continuity , 2005, CiE.

[56]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[57]  Venanzio Capretta,et al.  A polymorphic representation of induction-recursion , 2004 .

[58]  Program FOUNDATIONS OF CONSTRUCTIVE MATHEMATICS , 2014 .

[59]  Wim Veldman Some applications of Brouwer's Thesis on Bars , 2008 .

[60]  Mark Bickford,et al.  Validating Brouwer's continuity principle for numbers using named exceptions , 2017, Mathematical Structures in Computer Science.

[61]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[62]  Moshé MacHover VARIETIES OF CONSTRUCTIVE MATHEMATICS (London Mathematical Society Lecture Note Series 97) , 1988 .

[63]  Thorsten Altenkirch,et al.  Foundations of Software Science and Computation Structures: 6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings , 2003, Lecture Notes in Computer Science.

[64]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Karl Crary Type-Theoretic Methodology for Practical Programming Languages , 1998 .

[66]  Wim Veldman,et al.  Brouwer’s Real Thesis on Bars , 2006 .

[67]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[68]  Georg Kreisel,et al.  Lawless sequences of natural numbers , 1968 .

[69]  John Myhill,et al.  NOTES TOWARDS AN AXIOMATIZATION OF INTUITIONISTIC ANALYSIS , 1966 .

[70]  Mark Bickford,et al.  Bar induction: The good, the bad, and the ugly , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[71]  John Myhill,et al.  FORMAL SYSTEMS OF INTUITIONISTIC ANALYSIS, I, , 1968 .

[72]  Douglas J. Howe Equality in lazy computation systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[73]  Alexei Kopylov Type Theoretical Foundations for Data Structures, Classes, and Objects , 2004 .

[74]  Counterexamples in intuitionistic analysis using kripke's schema , 1969 .

[75]  Scott F. Smith Partial Objects in Type Theory , 1988 .

[76]  Thierry Coquand,et al.  Stop When You Are Almost-Full - Adventures in Constructive Termination , 2012, ITP.

[77]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[78]  S. Allen A Non-Type-Theoretic Semantics for Type-Theoretic Language , 1987 .

[79]  Robert L. Constable,et al.  Constructive Mathematics as a Programming Logic I: Some Principles of Theory , 1983, FCT.

[80]  M. Hofmann Extensional concepts in intensional type theory , 1995 .

[81]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[82]  Paulo Oliva Understanding and Using Spector's Bar Recursive Interpretation of Classical Analysis , 2006, CiE.

[83]  Peter Dybjer,et al.  Induction-recursion and initial algebras , 2003, Ann. Pure Appl. Log..

[84]  Thierry Coquand,et al.  Stack semantics of type theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[85]  Mark Bickford,et al.  A nominal exploration of intuitionism , 2016, CPP.

[86]  F. Richman,et al.  Varieties of Constructive Mathematics: CONSTRUCTIVE ALGEBRA , 1987 .

[87]  Robert L. Constable,et al.  Computational foundations of basic recursive function theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[88]  Aleksey Nogin,et al.  Formalizing Type Operations Using the "Image" Type Constructor , 2006, Electron. Notes Theor. Comput. Sci..

[89]  Hajime Ishihara,et al.  An omniscience principle, the König Lemma and the Hahn-Banach theorem , 1990, Math. Log. Q..

[90]  Ulrich Berger,et al.  Modified bar recursion , 2006, Mathematical Structures in Computer Science.

[91]  L. Brouwer,et al.  HISTORICAL BACKGROUND, PRINCIPLES AND METHODS OF INTUITIONISM , 1975 .

[92]  Stuart Allen A Non-Type-Theoretic Definition of Martin-Löf's Types , 1987, LICS.

[93]  Wim Veldman,et al.  Understanding and Using Brouwer’s Continuity Principle , 2001 .

[94]  Michael Rathjen,et al.  A note on Bar Induction in Constructive Set Theory , 2006, Math. Log. Q..

[95]  Michael Rathjen,et al.  Constructive Set Theory and Brouwerian Principles , 2005, J. Univers. Comput. Sci..

[96]  A. S. Troelstra Non-extensional equality , 1975 .

[97]  Dirk van Dalen The Use of Kripke's Schema as a Reduction Principle , 1977, J. Symb. Log..

[98]  Thorsten Altenkirch,et al.  Containers: Constructing strictly positive types , 2005, Theor. Comput. Sci..

[99]  P. Martin-Lof,et al.  Constructive mathematics and computer programming , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[100]  Georg Kreisel,et al.  On weak completeness of intuitionistic predicate logic , 1962, Journal of Symbolic Logic.

[101]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.