Approximation by DNF: Examples and Counterexamples

Say that f : {0, 1}n → {0, 1} e-approximates g : {0, 1}n → {0, 1} if the functions disagree on at most an e fraction of points. This paper contains two results about approximation by DNF and other smalldepth circuits: (1) For every constant 0 < e < 1/2 there is a DNF of size 2O√n that e-approximates the Majority function on n bits, and this is optimal up to the constant in the exponent. (2) There is a monotone function F : {0, 1}n → {0, 1} with total influence (AKA average sensitivity) I(F) ≤ O(log n) such that any DNF or CNF that.01-approximates F requires size 2Ω(n/ log n) and such that any unbounded fan-in AND-OR-NOT circuit that .01-approximates F requires size Ω(n/ log n). This disproves a conjecture of Benjamini, Kalai, and Schramm (appearing in [BKS99, Kal00, KS05]).

[1]  J. C. Jackson The harmonic sieve: a novel application of Fourier analysis to machine learning theory and practice , 1996 .

[2]  Emanuele Viola,et al.  On Probabilistic Time versus Alternating Time , 2005, Complexity of Boolean Functions.

[3]  Michel Talagrand,et al.  How much are increasing sets positively correlated? , 1996, Comb..

[4]  Ryan O'Donnell,et al.  Learning monotone decision trees in polynomial time , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[5]  L. Russo On the critical percolation probabilities , 1981 .

[6]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[7]  Andrew C. Yao,et al.  Lower bounds by probabilistic arguments , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[8]  Toniann Pitassi,et al.  Monotone Circuits for the Majority Function , 2006, APPROX-RANDOM.

[9]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[10]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  L. Russo A note on percolation , 1978 .

[12]  M. Paterson,et al.  Optimal carry save networks , 1992 .

[13]  Combinatorics with a geometric flavor: some examples , 2000 .

[14]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[15]  Ryan O'Donnell,et al.  Learning Monotone Decision Trees in Polynomial Time , 2007, SIAM J. Comput..

[16]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[17]  Nader H. Bshouty,et al.  On the Fourier spectrum of monotone functions , 1995, STOC '95.

[18]  Cristopher Moore,et al.  Computational Complexity and Statistical Physics , 2006, Santa Fe Institute Studies in the Sciences of Complexity.

[19]  Ravi B. Boppana,et al.  Threshold Functions and Bounded Depth Monotone Circuits , 1986, J. Comput. Syst. Sci..

[20]  G. Kalai Combinatorics with a Geometric Flavor , 2000 .

[21]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[22]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  P. Beame A switching lemma primer , 1994 .

[24]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998 .

[25]  D. Kleitman Families of Non-disjoint subsets* , 1966 .

[26]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[27]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[28]  Nathan Linial,et al.  Collective Coin Flipping , 1989, Adv. Comput. Res..

[29]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[30]  Miklós Ajtai,et al.  Approximate Counting with Uniform Constant-Depth Circuits , 1990, Advances In Computational Complexity Theory.

[31]  G. Kalai,et al.  Threshold Phenomena and Influence , 2005 .

[32]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[33]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[34]  E. Friedgut Hunting for sharp thresholds , 2005 .

[35]  Ravi B. Boppana,et al.  The Average Sensitivity of Bounded-Depth Circuits , 1997, Inf. Process. Lett..