A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity

Long-term synaptic plasticity is widely believed to underlie learning and memory in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has been the subject of considerable debate for many decades. More recently, it is generally agreed that the locus of plasticity depends on a number of factors, such as developmental stage, induction protocol, and synapse type. Since presynaptic expression alters not just the gain but also the short-term dynamics of a synapse, whereas postsynaptic expression only modifies the gain, the locus has fundamental implications for circuits dynamics and computations in the brain. It therefore remains crucial for our understanding of neuronal circuits to know the locus of expression of long-term plasticity. One classical method for elucidating whether plasticity is pre- or postsynaptically expressed is based on analysis of the coefficient of variation (CV), which serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a practical guide to using CV analysis for the purposes of exploring the locus of expression of long-term plasticity, primarily aimed at beginners in the field. We provide relatively simple intuitive background to an otherwise theoretically complex approach as well as simple mathematical derivations for key parametric relationships. We list important pitfalls of the method, accompanied by accessible computer simulations to better illustrate the problems (downloadable from GitHub), and we provide straightforward solutions for these issues.

[1]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[2]  E. Neher,et al.  Estimating synaptic parameters from mean, variance, and covariance in trains of synaptic responses. , 2001, Biophysical journal.

[3]  R. Malinow Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. , 1991, Science.

[4]  Steven A. Siegelbaum,et al.  Visualization of changes in presynaptic function during long-term synaptic plasticity , 2001, Nature Neuroscience.

[5]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[6]  A. Wernig,et al.  The binomial nature of transmitter release at the crayfish neuromuscular junction , 1971, The Journal of physiology.

[7]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[8]  H. Cline,et al.  Topographic maps: Developing roles of synaptic plasticity , 1998, Current Biology.

[9]  L. Abbott,et al.  Redundancy Reduction and Sustained Firing with Stochastic Depressing Synapses , 2002, The Journal of Neuroscience.

[10]  Arne V. Blackman,et al.  Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits , 2012, Neuron.

[11]  P. J. Sjöström,et al.  Synapse-type-specific plasticity in local circuits , 2015, Current Opinion in Neurobiology.

[12]  R. Nicoll,et al.  Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents , 1992, Nature.

[13]  A. Fine,et al.  The expression of long-term potentiation: reconciling the preists and the postivists , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  P. J. Sjöström,et al.  In Vitro Investigation of Synaptic Plasticity. , 2016, Cold Spring Harbor protocols.

[15]  Yun Wang,et al.  Developmental Switch in the Contribution of Presynaptic and Postsynaptic NMDA Receptors to Long-Term Depression , 2007, The Journal of Neuroscience.

[16]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[17]  N. Emptage,et al.  Two sides to long-term potentiation: a view towards reconciliation , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  N. Emptage,et al.  Optical Quantal Analysis Using Ca2+ Indicators: A Robust Method for Assessing Transmitter Release Probability at Excitatory Synapses by Imaging Single Glutamate Release Events , 2019, Front. Synaptic Neurosci..

[19]  B. Gustafsson,et al.  Short‐term facilitation evoked during brief afferent tetani is not altered by long‐term potentiation in the guinea‐pig hippocampal CA1 region , 1998, The Journal of physiology.

[20]  J. Marvin,et al.  Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ , 2019, Nature Communications.

[21]  T. Bliss Maintenance is presynaptic , 1990, Nature.

[22]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[23]  H. Markram,et al.  Matched Pre- and Post-Synaptic Changes Underlie Synaptic Plasticity over Long Time Scales , 2013, The Journal of Neuroscience.

[24]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[25]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[26]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[27]  H Korn,et al.  Probabilistic determination of synaptic strength. , 1986, Journal of neurophysiology.

[28]  K. Stratford,et al.  Presynaptic release probability influences the locus of long-term potentiation , 1992, Nature.

[29]  Eric R. Kandel,et al.  Recruitment of New Sites of Synaptic Transmission During the cAMP-Dependent Late Phase of LTP at CA3–CA1 Synapses in the Hippocampus , 1997, Neuron.

[30]  J. Lisman Long-term potentiation: outstanding questions and attempted synthesis. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  D. Rusakov,et al.  Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue. , 2017, Cell calcium.

[32]  B Katz,et al.  The statistical nature of the acetylcholine potential and its molecular components , 1972, The Journal of physiology.

[33]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[34]  J J Jack,et al.  Assessment of the reliability of amplitude histograms from excitatory synapses in rat hippocampal CA1 In Vitro , 1997, The Journal of physiology.

[35]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[36]  C. Reid,et al.  Postsynaptic expression of long‐term potentiation in the rat dentate gyrus demonstrated by variance‐mean analysis , 1999, The Journal of physiology.

[37]  D. Faber,et al.  Spontaneous quantal currents in a central neuron match predictions from binomial analysis of evoked responses. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[39]  B. Walmsley,et al.  Counting quanta: Direct measurements of transmitter release at a central synapse , 1995, Neuron.

[40]  Yangfan Peng,et al.  High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp , 2019, eLife.

[41]  P. Andersen,et al.  Amplitude fluctuations in small EPSPs recorded from CA1 pyramidal cells in the guinea pig hippocampal slice , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  J. Clements Variance–mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation , 2003, Journal of Neuroscience Methods.

[43]  Wulfram Gerstner,et al.  Stability of working memory in continuous attractor networks under the control of short-term plasticity , 2018, bioRxiv.

[44]  J. Lisman The Pre/Post LTP Debate , 2009, Neuron.

[45]  R. Silver,et al.  Locus of frequency‐dependent depression identified with multiple‐probability fluctuation analysis at rat climbing fibre‐Purkinje cell synapses , 1998, The Journal of physiology.

[46]  P. Castillo Presynaptic LTP and LTD of excitatory and inhibitory synapses. , 2012, Cold Spring Harbor perspectives in biology.

[47]  Antonio Malgaroli,et al.  Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons , 1992, Nature.

[48]  H. Atwood,et al.  Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Roberto Malinow,et al.  Measuring the impact of probabilistic transmission on neuronal output , 1993, Neuron.

[50]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[51]  A. Fine,et al.  Optical Quantal Analysis , 2019, Front. Synaptic Neurosci..

[52]  W. Regehr,et al.  The Mechanism of cAMP-Mediated Enhancement at a Cerebellar Synapse , 1997, The Journal of Neuroscience.

[53]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[54]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[55]  T. Murphy,et al.  Plasticity during stroke recovery: from synapse to behaviour , 2009, Nature Reviews Neuroscience.

[56]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[57]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Ellis‐Davies Two-Photon Uncaging of Glutamate , 2019, Front. Synaptic Neurosci..

[59]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[60]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[61]  J J Jack,et al.  Quantal analysis of excitatory synapses in rat hippocampal CA1 In Vitro during low‐frequency depression , 1997, The Journal of physiology.

[62]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[63]  A. R. Martin,et al.  Quantal Nature of Synaptic Transmission , 1966 .

[64]  H. Alle,et al.  High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp , 2019, bioRxiv.

[65]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[66]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[67]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[68]  D. Faber,et al.  Quantal analysis and synaptic efficacy in the CNS , 1991, Trends in Neurosciences.

[69]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[70]  B. Walmsley,et al.  Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. , 1983, The Journal of physiology.

[71]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[72]  P. J. Sjöström,et al.  Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses , 2007, Neuropharmacology.

[73]  R. Malinow,et al.  Postsynaptic conversion of silent synapses during LTP affects synaptic gain and transmission dynamics , 2001, Nature Neuroscience.

[74]  R. Nicoll,et al.  Expression Mechanisms Underlying NMDA Receptor‐Dependent Long‐Term Potentiation , 1999, Annals of the New York Academy of Sciences.

[75]  B. Walmsley,et al.  Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. , 1988, Journal of neurophysiology.

[76]  D. Quastel,et al.  The binomial model in fluctuation analysis of quantal neurotransmitter release. , 1997, Biophysical journal.

[77]  G. Kesteven,et al.  The Coefficient of Variation , 1946, Nature.

[78]  J. Simon Wiegert,et al.  High-speed imaging of glutamate release with genetically encoded sensors , 2019, Nature Protocols.

[79]  D. Debanne,et al.  Heterogeneity of Synaptic Plasticity at Unitary CA3–CA1 and CA3–CA3 Connections in Rat Hippocampal Slice Cultures , 1999, The Journal of Neuroscience.

[80]  P. Jesper Sjöström,et al.  Using Multiple Whole-Cell Recordings to Study Spike-Timing-Dependent Plasticity in Acute Neocortical Slices. , 2016, Cold Spring Harbor protocols.

[81]  R. Silver,et al.  Estimation of quantal parameters with multiple-probability fluctuation analysis. , 2007, Methods in molecular biology.

[82]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[83]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[84]  Igor Timofeev,et al.  Modulation of synaptic transmission in neocortex by network activities , 2005, The European journal of neuroscience.

[85]  W. Regehr,et al.  The readily releasable pool of synaptic vesicles , 2017, Current Opinion in Neurobiology.

[86]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[87]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[88]  S. Redman Quantal analysis of synaptic potentials in neurons of the central nervous system. , 1990, Physiological reviews.

[89]  Timothy E. Kennedy,et al.  Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity , 2019, Front. Synaptic Neurosci..

[90]  F. Morrell,et al.  Structural synaptic correlate of long‐term potentiation: Formation of axospinous synapses with multiple, completely partitioned transmission zones , 1993, Hippocampus.

[91]  J. Isaac,et al.  Expression mechanisms of long-term potentiation in the hippocampus , 1996, Journal of Physiology-Paris.

[92]  E. Neher,et al.  Combining deconvolution and fluctuation analysis to determine quantal parameters and release rates , 2003, Journal of Neuroscience Methods.

[93]  C. Stevens,et al.  Presynaptic mechanism for long-term potentiation in the hippocampus , 1990, Nature.

[94]  Alan Fine,et al.  Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis , 2009, Neuron.

[95]  P. J. Sjöström,et al.  Functional plasticity at dendritic synapses , 2016 .

[96]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[97]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[98]  Beatriz E. P. Mizusaki,et al.  Functional consequences of pre- and postsynaptic expression of synaptic plasticity , 2016, bioRxiv.

[99]  J. Clements,et al.  Unveiling synaptic plasticity: a new graphical and analytical approach , 2000, Trends in Neurosciences.

[100]  D. Faber,et al.  Quantal analysis and long-term potentiation. , 1998, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[101]  H. Korn,et al.  Transmission at a central inhibitory synapse. III. Ultrastructure of physiologically identified and stained terminals. , 1982, Journal of neurophysiology.

[102]  Wulfram Gerstner,et al.  Stability of working memory in continuous attractor networks under the control of short-term plasticity , 2019, PLoS Comput. Biol..

[103]  Henry Markram,et al.  A computer-assisted multi-electrode patch-clamp system. , 2013, Journal of visualized experiments : JoVE.

[104]  Rui Ponte Costa,et al.  Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning , 2015, eLife.

[105]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[106]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[107]  Michael C. Crair,et al.  Silent Synapses during Development of Thalamocortical Inputs , 1997, Neuron.

[108]  Roberto Araya,et al.  Probing Single Synapses via the Photolytic Release of Neurotransmitters , 2019, Front. Synaptic Neurosci..

[109]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[110]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[111]  T. Bliss,et al.  Optical Quantal Analysis Reveals a Presynaptic Component of LTP at Hippocampal Schaffer-Associational Synapses , 2003, Neuron.

[112]  B. Walmsley,et al.  Release probability modulates short‐term plasticity at a rat giant terminal , 2000, The Journal of physiology.

[113]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[114]  D. Faber,et al.  Applicability of the coefficient of variation method for analyzing synaptic plasticity. , 1991, Biophysical journal.

[115]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[116]  T. Branco,et al.  Local Dendritic Activity Sets Release Probability at Hippocampal Synapses , 2008, Neuron.

[117]  M. Häusser,et al.  Synaptic function: Dendritic democracy , 2001, Current Biology.

[118]  Jennifer A. Brock,et al.  Differential Regulation of Evoked and Spontaneous Release by Presynaptic NMDA Receptors , 2017, Neuron.

[119]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[120]  R. Nicoll,et al.  Hippocampal Long-Term Potentiation Preserves the Fidelity of Postsynaptic Responses to Presynaptic Bursts , 1999, The Journal of Neuroscience.

[121]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[122]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[123]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[124]  Alain Marty,et al.  Multivesicular Release at Single Functional Synaptic Sites in Cerebellar Stellate and Basket Cells , 1998, The Journal of Neuroscience.

[125]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[126]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[127]  Richard Cb Slack,et al.  Measuring the Impact , 1998 .

[128]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[129]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.