Critical scale invariance in a healthy human heart rate.

We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human heart rate is controlled to converge continually to a critical state.

[1]  Jeffrey M. Hausdorff,et al.  Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[2]  H. Stanley,et al.  Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena , 1999 .

[3]  A L Goldberger,et al.  Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. , 2000, Circulation.

[4]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[5]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[6]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[7]  J. Fleiss,et al.  Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. , 1996, Circulation.

[8]  J. Fleiss,et al.  Frequency Domain Measures of Heart Period Variability and Mortality After Myocardial Infarction , 1992, Circulation.

[9]  T. Desai,et al.  Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography. , 2003, American journal of physiology. Cell physiology.

[10]  H. Takayasu,et al.  Dynamic phase transition observed in the Internet traffic flow , 2000 .

[11]  James P Sethna,et al.  Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[13]  Kiyoshi Kotani,et al.  Model for cardiorespiratory synchronization in humans. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Haye Hinrichsen,et al.  Multifractal current distribution in random-diode networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Ricard V. Solé,et al.  Self-organized critical traffic in parallel computer networks , 2002 .

[17]  A. Wear CIRCULATION , 1964, The Lancet.

[18]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[19]  Wu,et al.  Scaling and universality in avalanches. , 1989, Physical review. A, General physics.

[20]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[21]  H. Stanley,et al.  Behavioral-independent features of complex heartbeat dynamics. , 2001, Physical review letters.

[22]  R. Hughson,et al.  Modeling heart rate variability in healthy humans: a turbulence analogy. , 2001, Physical review letters.

[23]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[24]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.