Lattice Boltzmann simulations of segregating binary fluid mixtures in shear flow

We apply lattice Boltzmann method to study the phase separation of a two-dimensional binary fluid mixture in shear flow. The algorithm can simulate systems described by the Navier–Stokes and convection–diffusion equations. We propose a new scheme for imposing the shear flow which has the advantage of preserving mass and momentum conservation on the boundary walls without introducing slip velocities. We study how the steady velocity profile is reached. Our main results show the presence of two typical length scales in the phase separation process, corresponding to domains with two different thicknesses.

[1]  M. F. Malone,et al.  Effects of Shear on Miscible Polymer Blends: In-Situ Fluorescence Studies , 1991 .

[2]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[3]  D. Rothman Complex Rheology in a Model of a Phase-Separating Fluid , 1991 .

[4]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[5]  L. Reichl A modern course in statistical physics , 1980 .

[6]  D. Rothman,et al.  Three-dimensional immiscible lattice gas: Application to sheared phase separation , 1995 .

[7]  C. Tanford Macromolecules , 1994, Nature.

[8]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Moses,et al.  String phase in phase-separating fluids under shear flow. , 1995, Physical review letters.

[10]  A. Lamura,et al.  Spinodal Decomposition of Binary Mixtures in Uniform Shear Flow , 1998 .

[11]  Bray Aj Renormalization-group approach to domain-growth scaling. , 1990 .

[12]  Turab Lookman,et al.  Spinodal decomposition in binary fluids under shear flow , 1997 .

[13]  Banavar,et al.  Lattice Boltzmann study of hydrodynamic spinodal decomposition. , 1995, Physical review letters.

[14]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[15]  M. F. Malone,et al.  Shear-induced demixing in a polystyrene/poly(vinyl methyl ether) blend: in-situ fluorescence and rheometry , 1992 .

[16]  So,et al.  Spinodal decomposition under shear flow , 1997 .

[17]  Takaji Inamuro,et al.  A NON-SLIP BOUNDARY CONDITION FOR LATTICE BOLTZMANN SIMULATIONS , 1995, comp-gas/9508002.

[18]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[19]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[20]  D. Levermore,et al.  A Knudsen layer theory for lattice gases , 1991 .

[21]  M. Doi,et al.  Computer simulations of domain growth under steady shear flow , 1990 .

[22]  J. H. Gibbs,et al.  Molecular theory of surface tension , 1975 .

[23]  M. E. Cates,et al.  Inertia, coarsening and fluid motion in binary mixtures , 1999 .

[24]  A. Wagner,et al.  Phase Separation under Shear in Two-dimensional Binary Fluids , 1999, cond-mat/9904033.

[25]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[26]  Akira Onuki Phase transitions of fluids in shear flow , 1997 .

[27]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[28]  Journal of Polymer Science , 1946, Nature.

[29]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[30]  Paul Lavallée,et al.  Boundaries in lattice gas flows , 1991 .

[31]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[32]  G. Gonnella,et al.  Spinodal Decomposition to a Lamellar Phase: Effects of Hydrodynamic Flow , 1997 .

[33]  H. Schlichting Boundary Layer Theory , 1955 .

[34]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[35]  M. Doi,et al.  Computer simulations of domain growth under shear flow , 1990 .

[36]  D. Pine,et al.  Structure Evolution of a Polymer Solution at High Shear Rates , 1996 .

[37]  Two-Scale Competition in Phase Separation with Shear , 1999, cond-mat/9904423.

[38]  M. E. Cates,et al.  3D spinodal decomposition in the inertial regime , 1999, cond-mat/9902346.