Reduced-order modeling for cardiac electrophysiology. Application to parameter identification.

A reduced-order model based on proper orthogonal decomposition (POD) is proposed for the bidomain equations of cardiac electrophysiology. Its accuracy is assessed through electrocardiograms in various configurations, including myocardium infarctions and long-time simulations. We show in particular that a restitution curve can efficiently be approximated by this approach. The reduced-order model is then used in an inverse problem solved by an evolutionary algorithm. Some attempts are presented to identify ionic parameters and infarction locations from synthetic electrocardiograms.

[1]  A. Tveito,et al.  Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso , 2002 .

[2]  Piero Colli Franzone,et al.  Multiscale Modeling for the Bioelectric Activity of the Heart , 2005, SIAM J. Math. Anal..

[3]  A. Tveito,et al.  Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. , 2001, Mathematical biosciences.

[4]  Dale Dubin,et al.  Rapid interpretation of EKG's : an interactive course , 2000 .

[5]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[6]  Andrew J. Pullan,et al.  Solving the cardiac bidomain equations for discontinuous conductivities , 2006, IEEE Transactions on Biomedical Engineering.

[7]  Jean-Frédéric Gerbeau,et al.  Parameter Identification in Cardiac Electrophysiology Using Proper Orthogonal Decomposition Method , 2011, FIMH.

[8]  W. Krassowska,et al.  Homogenization of syncytial tissues. , 1993, Critical reviews in biomedical engineering.

[9]  Linda El Alaoui,et al.  How genetic algorithms can improve a pacemaker efficiency , 2007, GECCO '07.

[10]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[11]  Mark Potse,et al.  The role of extracellular potassium transport in computer models of the ischemic zone , 2007, Medical & Biological Engineering & Computing.

[12]  Maxime Sermesant,et al.  Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties , 2005, FIMH.

[13]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[14]  Andrew J. Pullan,et al.  A Finite Element Method for an Eikonal Equation Model of Myocardial Excitation Wavefront Propagation , 2002, SIAM J. Appl. Math..

[15]  C. Medigue,et al.  Electrocardiogram-based restitution curve , 2006, 2006 Computers in Cardiology.

[16]  J. Nenonen,et al.  Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling , 2004, Annals of Biomedical Engineering.

[17]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[18]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.

[19]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[20]  Aslak Tveito,et al.  On the use of the resting potential and level set methods for identifying ischemic heart disease: An inverse problem , 2007, J. Comput. Phys..

[21]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[22]  B. Taccardi,et al.  Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. , 2005, Mathematical biosciences.

[23]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[24]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[25]  A. Garfinkel,et al.  T-Wave Alternans and Arrhythmogenesis in Cardiac Diseases , 2010, Front. Physio..

[26]  Luca F. Pavarino,et al.  Multilevel Schwarz and Multigrid Preconditioners for the Bidomain System , 2008 .

[27]  Miguel A. Fernández,et al.  Mathematical Modeling of Electrocardiograms: A Numerical Study , 2010, Annals of Biomedical Engineering.

[28]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[29]  J. Keener,et al.  A numerical method for the solution of the bidomain equations in cardiac tissue. , 1998, Chaos.

[30]  R. Coronel,et al.  The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. , 2007, Heart rhythm.

[31]  Yorgos Goletsis,et al.  Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis , 2004, IEEE Transactions on Biomedical Engineering.

[32]  J. Keener An eikonal-curvature equation for action potential propagation in myocardium , 1991, Journal of mathematical biology.

[33]  Marc Ethier,et al.  Semi-Implicit Time-Discretization Schemes for the Bidomain Model , 2008, SIAM J. Numer. Anal..

[34]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.