Proposal and Test Run of Wheel Slip Stabilizing Control

This paper proposes and demonstrates a novel slip stabilizing control method for electric railway vehicles to achieve both high acceleration and riding comfort. The control method squeezes the torque command of traction motors generated by a feed-forward slip acceleration control in order to stabilize wheel slips. The controller stabilizes wheel velocity during wheel slips and avoids diverging of wheel slipping that can cause vibrations, noises or wheel and rail damage. The method also achieves slower re-adhesion with less longitudinal shock. The test run results show that the method achieves both higher acceleration and better riding comfort than the conventional re-adhesion control method.