Quantification of Interface Interaction between Fe and FexCy via ReaxFF

[1]  S. Maenosono,et al.  Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles , 2022, Materials.

[2]  Haiwei Liang,et al.  Quantification of critical particle distance for mitigating catalyst sintering , 2021, Nature communications.

[3]  C. Shang,et al.  Thermodynamics and Catalytic Activity of Ruthenium Oxides Grown on Ruthenium Metal from a Machine Learning Atomic Simulation , 2021, The Journal of Physical Chemistry C.

[4]  Yong Yang,et al.  A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products , 2021, Science.

[5]  Yongsoo Yang,et al.  Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography , 2020, Nature Communications.

[6]  Zhenhua Li,et al.  Highly efficient iron based MOFs mediated catalysts for Fischer–Tropsch synthesis: Effect of reduction atmosphere , 2020 .

[7]  Ze Zhang,et al.  Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy , 2020, Science.

[8]  Yong Yang,et al.  The structure–activity relationship of Fe nanoparticles in CO adsorption and dissociation by reactive molecular dynamics simulations , 2019, Journal of Catalysis.

[9]  Yong Yang,et al.  Developing ReaxFF to Visit CO Adsorption and Dissociation on Iron Surfaces , 2018, The Journal of Physical Chemistry C.

[10]  Yuzheng Wang,et al.  Atomic structure of the Fe/Fe3C interface with the Isaichev orientation in pearlite , 2017 .

[11]  R. Mohammadzadeh,et al.  Molecular dynamics study of strain-induced diffusivity of nitrogen in pure iron nanocrystalline , 2016 .

[12]  Cheng Wang,et al.  Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis , 2016 .

[13]  Guang Yang,et al.  CO Oxidation over Strained Pt(100) Surface: A DFT Study , 2015 .

[14]  U. Graham,et al.  Fischer–Tropsch Synthesis: Morphology, Phase Transformation, and Carbon‐Layer Growth of Iron‐Based Catalysts , 2014 .

[15]  M. Kiwi,et al.  Role of the substrate dynamics: Iron clusters deposited on an iron slab , 2011 .

[16]  L. Kempel,et al.  Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites , 2011, Nanotechnology.

[17]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[18]  You Qiang,et al.  Iron/iron oxide core-shell nanoclusters for biomedical applications , 2006 .

[19]  M. Nielsen,et al.  Structural and magnetic properties of core–shell iron–iron oxide nanoparticles , 2002 .

[20]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[21]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[22]  J. Niemantsverdriet,et al.  Iron Carbide Formation on Thin Iron Films Grown on Cu(100): Fcc Iron Stabilized by a Stable Surface Carbide , 2022, SSRN Electronic Journal.

[23]  I. Baker,et al.  Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia. , 2010, Materials science & engineering. C, Materials for biological applications.

[24]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .