Nonlinear Electroelastic Dynamical Systems for Inertial Power Generation

Mechanical Engineering) Nonlinear Electroelastic Dynamical Systems for Inertial Power Generation by Samuel C. Stanton Department of Mechanical Engineering and Materials Science Duke University

[1]  Younghoon Kim,et al.  Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response , 2009 .

[2]  Daniel J. Inman,et al.  On the optimal energy harvesting from a vibration source using a PZT stack , 2009 .

[3]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[4]  D. Diamond,et al.  Chemo/bio-sensor networks , 2006, Nature materials.

[5]  Jeffrey T. Scruggs,et al.  An optimal stochastic control theory for distributed energy harvesting networks , 2009 .

[6]  Timothy D. Usher,et al.  Nonlinear dynamics of piezoelectric high displacement actuators in cantilever mode , 2005 .

[7]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[8]  Thiago Seuaciuc-Osório,et al.  Investigation of Power Harvesting via Parametric Excitations , 2009 .

[9]  Brian P. Mann,et al.  Closed form solutions for the dynamic response of Euler–Bernoulli beams with step changes in cross section , 2006 .

[10]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[11]  S. Sarkani,et al.  On applications of generalized functions to the analysis of Euler-Bernoulli beam-columns with jump discontinuities , 2001 .

[12]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .

[13]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[14]  Jiashi Yang,et al.  Performance of a piezoelectric bimorph for scavenging vibration energy , 2005 .

[15]  Stephen G. Burrow,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2009 .

[16]  Harry F. Tiersten,et al.  Electroelastic equations for electroded thin plates subject to large driving voltages , 1993 .

[17]  Paul Woafo,et al.  Optimization of electromechanical control of beam dynamics: Analytical method and finite differences simulation , 2006 .

[18]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[19]  Makoto Ishida,et al.  Integrated Inductors for RF Transmitters in CMOS/MEMS Smart Microsensor Systems , 2007, Sensors (Basel, Switzerland).

[20]  Paul Woafo,et al.  Active control with delay of vibration and chaos in a double-well Duffing oscillator , 2003 .

[21]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[22]  Du Toit,et al.  Modeling and design of a MEMS piezoelectric vibration energy harvester , 2005 .

[23]  J. G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[24]  Brian P. Mann,et al.  Investigations of a nonlinear energy harvester with a bistable potential well , 2010 .

[25]  Jungho Ryu,et al.  High-power resonant measurements of piezoelectric materials: Importance of elastic nonlinearities , 2001 .

[26]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[27]  Emil Simiu Emil Simiu: Chaotic Transitions in Deterministic and Stochastic Dynamical Systems Chapter One , .

[28]  Christian C. Enz,et al.  WiseNET: an ultralow-power wireless sensor network solution , 2004, Computer.

[29]  E. Crawley,et al.  Detailed Models of Piezoceramic Actuation of Beams , 1989 .

[30]  S. Naguleswaran,et al.  Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports , 2002 .

[31]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[32]  A. H. Nayfeh,et al.  Nonlinear motions of beam-mass structure , 1990 .

[33]  Peter Woias,et al.  Characterization of different beam shapes for piezoelectric energy harvesting , 2008 .

[34]  C. Tchawoua,et al.  Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory , 2010 .

[35]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[36]  Yoshisuke Ueda,et al.  Optimal escape from potential wells—patterns of regular and chaotic bifurcation , 1995 .

[37]  Mallik,et al.  Role of nonlinear dissipation in soft Duffing oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  J. Reddy,et al.  Generalized solutions of beams with jump discontinuities on elastic foundations , 2001 .

[39]  J. Scruggs,et al.  Harvesting Ocean Wave Energy , 2009, Science.

[40]  Sandeep Kumar Parashar,et al.  Nonlinear Longitudinal Vibrations of Transversally Polarized Piezoceramics: Experiments and Modeling , 2004 .

[41]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[42]  Siyuan He,et al.  THEORETICAL AND EXPERIMENTAL STUDIES OF BEAM BIMORPH PIEZOELECTRIC POWER HARVESTERS , 2010 .

[43]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[44]  Kai Wolf,et al.  NONLINEAR DYNAMICS OF A CANTILEVER BEAM ACTUATED BY PIEZOELECTRIC LAYERS IN SYMMETRIC AND ASYMMETRIC CONFIGURATION , 2001 .

[45]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[46]  Daniel J. Inman,et al.  Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators , 2010 .

[47]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[48]  Shahram Sarkani,et al.  On nonuniform Euler–Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory , 2001 .

[49]  P. Seshu,et al.  A finite element model for nonlinear behaviour of piezoceramics under weak electric fields , 2005 .

[50]  S. Naguleswaran,et al.  Vibration and stability of an Euler–Bernoulli beam with up to three-step changes in cross-section and in axial force , 2003 .

[51]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[52]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[53]  Jiashi Yang,et al.  Analysis of Piezoelectric Devices , 2006 .

[54]  J. Thompson,et al.  Chaotic phenomena triggering the escape from a potential well , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[55]  Charles R. Farrar,et al.  Energy Harvesting for Structural Health Monitoring Sensor Networks , 2008 .

[56]  Daniel J. Inman,et al.  Issues in mathematical modeling of piezoelectric energy harvesters , 2008 .

[57]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[58]  B. Alphenaar,et al.  SMART MATERIALS AND STRUCTURES , 2009 .

[59]  G. Meng,et al.  Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.

[60]  Jeffrey T. Scruggs,et al.  On the Causal Power Generation Limit for a Vibratory Energy Harvester in Broadband Stochastic Response , 2010 .

[61]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[62]  Philip Holmes,et al.  A magnetoelastic strange attractor , 1979 .

[63]  Philip Holmes,et al.  Global bifurcations and chaos in the forced oscillations of buckled structures , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[64]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[65]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[66]  Richard Haberman,et al.  Separatrix crossing: time-invariant potentials with dissipation , 1990 .

[67]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[68]  N. Jalili,et al.  Modeling, Nonlinear Dynamics, and Identification of a Piezoelectrically Actuated Microcantilever Sensor , 2008, IEEE/ASME Transactions on Mechatronics.

[69]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[70]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[71]  J. M. T. Thompson,et al.  THE EFFECT OF DAMPING ON THE STEADY STATE AND BASIN BIFURCATION PATTERNS OF A NONLINEAR MECHANICAL OSCILLATOR , 1992 .

[72]  Robert C. Hilborn,et al.  Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers , 1993 .

[73]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[74]  Oded Gottlieb,et al.  Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer , 2002 .

[75]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[76]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[77]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1977 .

[78]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[79]  Richard Haberman,et al.  Averaging methods for the phase shift of arbitrarily perturbed strongly nonlinear oscillators with an application to capture , 1991 .

[80]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[81]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[82]  Earl H. Dowell,et al.  The role of higher modes in the chaotic motion of the buckled beam—II , 1996 .

[83]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[84]  H. S. Kushwaha,et al.  Nonlinear behaviour of piezoceramics under weak electric fields. Part II: Numerical results and validation with experiments , 2006 .

[85]  Yang Zhang,et al.  Toward self-tuning adaptive vibration-based microgenerators , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[86]  F. Ulaby Fundamentals of applied electromagnetics , 1998 .

[87]  Gérard A. Maugin,et al.  Nonlinear Electromechanical Effects and Applications , 1986 .

[88]  Wanda Szemplinska-Stupnicka,et al.  Steady states in the twin-well potential oscillator: Computer simulations and approximate analytical studies. , 1993, Chaos.

[89]  Kar W. Yung,et al.  An Analytic Solution for the Force Between Two Magnetic Dipoles , 1998 .

[90]  Daniel J. Inman,et al.  Comment on ‘Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation’ , 2008 .

[91]  D. Guyomar,et al.  Toward energy harvesting using active materials and conversion improvement by nonlinear processing , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[92]  Earl H. Dowell,et al.  Simplified predictive criteria for the onset of chaos , 1994 .

[93]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[94]  Mustafa Arafa,et al.  Resonator with magnetically adjustable natural frequency for vibration energy harvesting , 2010 .

[95]  Brian P. Mann,et al.  Energy criterion for potential well escapes in a bistable magnetic pendulum , 2009 .

[96]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[97]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[98]  N. J. Taleb Vibration of Stepped Beams , 1961 .

[99]  N. G. Stephen,et al.  On energy harvesting from ambient vibration , 2006 .

[100]  C. W. Bert,et al.  Free vibration of stepped beams: exact and numerical solutions , 1989 .

[101]  S. Baglio,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2010 .

[102]  Ali H. Nayfeh,et al.  A Parametric Identification Technique for Single-Degree-of-Freedom Weakly Nonlinear Systems with Cubic Nonlinearities , 2003 .

[103]  Huan Xue,et al.  Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[104]  Utz von Wagner,et al.  Non-linear longitudinal vibrations of piezoceramics excited by weak electric fields , 2003 .

[105]  H. S. Kushwaha,et al.  Nonlinear behaviour of piezoceramics under weak electric fields: Part-I: 3-D finite element formulation , 2006 .

[106]  Huan Xue,et al.  Nonlinear behavior of a piezoelectric power harvester near resonance , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[107]  Steve G Burrow,et al.  Vibration energy harvesters with non-linear compliance , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[108]  S. Caddemi,et al.  Closed form solutions of Euler–Bernoulli beams with singularities , 2005 .

[109]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[110]  Wanda Szempliiqska-Stupnicka The Analytical Predictive Criteria for Chaos and Escape in Nonlinear Oscillators: A Survey , 2004 .

[111]  S. M. Shahruz,et al.  Increasing the Efficiency of Energy Scavengers by Magnets , 2008 .

[112]  P. Hagedorn,et al.  PIEZO–BEAM SYSTEMS SUBJECTED TO WEAK ELECTRIC FIELD: EXPERIMENTS AND MODELLING OF NON-LINEARITIES , 2002 .

[113]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[114]  Jerrold E. Marsden,et al.  A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam , 1981 .

[115]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[116]  Earl H. Dowell,et al.  Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment , 2008 .

[117]  N. Popplewell,et al.  FREE VIBRATIONS OF A COMPLEX EULER-BERNOULLI BEAM , 1996 .

[118]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[119]  J. Bartlett,et al.  Product information , 2001, Transplantation.

[120]  Brian P. Mann,et al.  On the dynamic response of beams with multiple geometric or material discontinuities , 2010 .

[121]  Daniel J. Inman,et al.  Recharging Batteries using Energy Harvested from Thermal Gradients , 2007 .

[122]  Ahmadreza Tabesh,et al.  An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters , 2008 .

[123]  John E. Sader,et al.  Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids , 2000 .

[124]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[125]  Daniel J. Inman,et al.  Nonlinear Response of the Macro Fiber Composite Actuator to Monotonically Increasing Excitation Voltage , 2006 .

[126]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[127]  Daniel Guyomar,et al.  Piezoelectric Ceramics Nonlinear Behavior. Application to Langevin Transducer , 1997 .

[128]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[129]  Daniel J. Inman,et al.  On the existence of normal modes of damped discrete-continuous systems , 1998 .

[130]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[131]  H. F. Tiersten,et al.  Analysis of intermodulation in thickness−shear and trapped energy resonators , 1975 .

[132]  Peter Hagedorn,et al.  Nonlinear Effects of Piezoceramics Excited by Weak Electric Fields , 2003 .

[133]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[134]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .

[135]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[136]  Wen-Jong Wu,et al.  An improved analysis of the SSHI interface in piezoelectric energy harvesting , 2007 .

[137]  Dennis Hohlfeld,et al.  Modeling and characterization of MEMS-based piezoelectric harvesting devices , 2010 .

[138]  C. W. Bert,et al.  Free vibration of stepped beams: Higher mode frequencies and effects of steps on frequency , 1989 .

[139]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[140]  D. Inman,et al.  Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification , 2010 .

[141]  Bruno Ando,et al.  Nonlinear mechanism in MEMS devices for energy harvesting applications , 2010 .

[142]  G. X. Li,et al.  The Non-linear Equations of Motion of Pipes Conveying Fluid , 1994 .

[143]  Teresa Tsukazan,et al.  The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section , 2005 .