Cellular Statistical Models of Broken Cloud Fields. Part I: Theory

A new analytical statistical model describing the structure of broken cloud fields is presented. It depends on two parameters (cell size and occupancy probability) and provides chord distributions of clouds and gaps between them by length, as well as the cloud fraction distribution. This approach is based on the assumption that the structure of a cloud field is determined by a semiregular grid of cells (an abstraction of the atmospheric convective cells), which are filled with cloud with some probability. First, a simple discrete model is introduced, where clouds and gaps can occupy an integer number of cells, and then a continuous analog is developed, allowing for arbitrary cloud and gap sizes. The influence of a finite sample size on the retrieved statistics is also described.

[1]  L. Remer,et al.  How small is a small cloud , 2008 .

[2]  R. Ellingson On the Effects of Cumulus Dimensions on Longwave Irradiance and Heating Rate Calculations , 1982 .

[3]  Vernon G. Plank,et al.  The Size Distribution of Cumulus Clouds in Representative Florida Populations , 1969 .

[4]  R. Somerville,et al.  Stochastic theory of radiative transfer through generalized cloud fields , 2004 .

[5]  M. Aida Scattering of solar radiation as a function of cloud dimensions and orientation , 1977 .

[6]  Robert F. Cahalan,et al.  Fractal Statistics of Cloud Fields , 1989 .

[7]  G. C. Pomraning,et al.  A Stochastic Description of a Broken Cloud Field , 1994 .

[8]  Witold F. Krajewski,et al.  A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method , 1994 .

[9]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Brian Cairns,et al.  Automated cloud screening algorithm for MFRSR data , 2004 .

[12]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[13]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[14]  G. C. Pomraning,et al.  Stochastic radiative transfer in a partially cloudy atmosphere. , 1993 .

[15]  Ronald M. Welch,et al.  Cumulus Cloud Properties Derived Using Landsat Satellite Data , 1986 .

[16]  J. Michalsky,et al.  Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. , 1994, Applied optics.

[17]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[18]  J. Settle,et al.  On the Bayesian Estimation of Cloud Fraction from Lidar Transects , 2007 .

[19]  H. Grubb,et al.  Sampling uncertainty properties of cloud fraction estimates from random transect observations , 2006 .

[20]  I. Astin,et al.  A Case for Exponential Cloud Fields , 1998 .

[21]  Manfred Wendisch,et al.  Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators , 2007 .

[22]  3D Radiative Transfer in Stochastic Media , 2005 .

[23]  I. S. Gradshteyn,et al.  1 – ELEMENTARY FUNCTIONS , 1980 .

[24]  Harm J. J. Jonker,et al.  Size Distributions and Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and Satellite Data , 2003 .

[25]  George J. Huffman,et al.  A stochastic model of cumulus clumping , 1980 .

[26]  Robert F. Cahalan,et al.  Nearest Neighbor Spacing of Fair Weather Cumulus Clouds. , 1990 .

[27]  Frédéric Mesnard,et al.  The Relation between the Area-Average Rain Rate and the Rain Cell Size Distribution Parameters , 1999 .

[28]  Larry Di Girolamo,et al.  A general formalism for the distribution of the total length of a geophysical parameter along a finite transect , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[30]  Anne Kite The albedo of broken cloud fields , 2007 .

[31]  Mikhail D. Alexandrov,et al.  Cellular Statistical Models of Broken Cloud Fields. Part II: Comparison with a Dynamical Model and Statistics of Diverse Ensembles , 2010 .

[32]  Georgi A. Titov,et al.  Statistical Description of Radiation Transfer in Clouds. , 1990 .

[33]  E. Kassianov Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach , 2003 .

[34]  Robert F. Cahalan,et al.  Bounded cascade models as nonstationary multifractals. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  S. Nicholls The structure of radiatively driven convection in stratocumulus , 1989 .

[36]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[37]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[38]  Radiative Transfer in Cloud Fields with Random Geometry , 1995 .

[39]  L. Girolamo,et al.  Bayesian confidence intervals for true fractional coverage from finite transect measurements: Implications for cloud studies from space , 2001 .

[40]  B. W. Conolly,et al.  On Randomized Random Walks , 1971 .

[41]  L. Takács On certain sojourn time problems in the theory of stochastic processes , 1957 .

[42]  A. Marshak,et al.  A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud-Top Height Fields , 2009 .

[43]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[44]  Francois-Marie Breon,et al.  Reflectance of broken cloud fields : simulation and parameterization , 1992 .

[45]  R. Rogers,et al.  An Inversion Problem on Inferring the Size Distribution of Precipitation Areas from Raingage Measurements , 1984 .

[46]  Sarah F. Kew,et al.  A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds , 2005 .

[47]  Richard C. J. Somerville,et al.  Radiative Transfer through Broken Clouds: Observations and Model Validation , 2002 .

[48]  Anthony B. Davis,et al.  3D Radiative Transfer in Cloudy Atmospheres , 2005 .

[49]  C. Simmer,et al.  Statistical characteristics of surrogate data based on geophysical measurements , 2006 .

[50]  Evgueni I. Kassianov,et al.  Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site , 2008 .

[51]  Robert F. Cahalan Bounded cascade clouds: albedo and effective thickness , 1994 .

[52]  K. Nagel,et al.  Self-organizing criticality in cloud formation? , 1992 .

[53]  Warren J. Wiscombe,et al.  An algorithm for generating stochastic cloud fields from radar profile statistics , 2004 .

[54]  R. Bras,et al.  Clustered or regular cumulus cloud fields: The statistical character of observed and simulated cloud fields , 1990 .