A 0.75‐V, 4‐μW, 15‐ppm/°C, 190 °C temperature range, voltage reference

A low-voltage, low-power, low-area, wide-temperature-range CMOS voltage reference is presented. The proposed reference circuit achieves a measured temperature drift of 15ppm/i¾źC for an extremely wide temperature range of 190i¾źC -60 to 130i¾źC while consuming only 4µW at 0.75V. It performs a high-order curvature correction of the reference voltage while consisting of only CMOS transistors operating in subthreshold and polysilicon resistors, without utilizing any diodes or external components such as compensating capacitors. A trade-off of this circuit topology, in its current form, is the high line sensitivity. The design was fabricated using TowerJazz semiconductor's 0.18-µm standard CMOS technology and occupies an area of 0.039mm2. The proposed reference circuit is suitable for high-precision, low-energy-budget applications, such as mobile systems, wearable electronics, and energy harvesting systems. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Fengqi Yu,et al.  A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Kenji Taniguchi,et al.  An Area-Efficient CMOS Bandgap Reference Utilizing a Switched-Current Technique , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  G. Iannaccone,et al.  A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[5]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[6]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[7]  Gabriel A. Rincon-Mora,et al.  A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference , 1998, IEEE J. Solid State Circuits.

[8]  Ka Nang Leung,et al.  A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.

[9]  Y. Tsividis Accurate analysis of temperature effects in I/SUB c/V/SUB BE/ characteristics with application to bandgap reference sources , 1980, IEEE Journal of Solid-State Circuits.

[10]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[11]  Clyde Washburn,et al.  An ultra-thin oxide sub-1 V CMOS bandgap voltage reference , 2014, Int. J. Circuit Theory Appl..

[12]  Athanasios Tsitouras,et al.  A sub-1V supply CMOS voltage reference generator , 2012, Int. J. Circuit Theory Appl..

[13]  Julius Georgiou,et al.  A novel CMOS Bandgap reference circuit with improved high-order temperature compensation , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[14]  Yannis Tsividis,et al.  Operation and Modeling of the Mos Transistor (The Oxford Series in Electrical and Computer Engineering) , 2004 .

[15]  Tor Sverre Lande,et al.  A Sub-$\mu{\rm W}$ Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  C. Fiocchi,et al.  Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[17]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[18]  G. Palumbo,et al.  A low-voltage low-power voltage reference based on subthreshold MOSFETs , 2003, IEEE J. Solid State Circuits.

[19]  Abdelhalim Bendali,et al.  A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Julius Georgiou,et al.  An all-subthreshold, 0.75V supply, 2ppm/°C, CMOS Voltage Reference , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[21]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[22]  Ze-kun Zhou,et al.  A CMOS Voltage Reference Based on Mutual Compensation of Vtn and Vtp , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Hongchin Lin,et al.  A low-voltage band-gap reference circuit with second-order analyses , 2011, Int. J. Circuit Theory Appl..

[24]  Yiqiang Zhao,et al.  A high-order curvature-corrected CMOS bandgap voltage reference with constant current technique , 2014, Int. J. Circuit Theory Appl..

[25]  Julius Georgiou,et al.  A Novel Wide-Temperature-Range, 3.9 ppm/$^{\circ}$C CMOS Bandgap Reference Circuit , 2012, IEEE Journal of Solid-State Circuits.

[26]  Giuseppe Iannaccone,et al.  A picopower temperature-compensated, subthreshold CMOS voltage reference , 2014, Int. J. Circuit Theory Appl..

[27]  Jeongjin Roh,et al.  A 1.2-V 4.2- ppm°C High-Order Curvature-Compensated CMOS Bandgap Reference. , 2015 .

[28]  Gaetano Palumbo,et al.  A detailed analysis of power-supply noise attenuation in bandgap voltage references , 2003 .

[29]  Jeongjin Roh,et al.  A 1.2-V 4.2- $\hbox{ppm}/^{\circ}\hbox{C}$ High-Order Curvature-Compensated CMOS Bandgap Reference , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Giuseppe de Vita,et al.  A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.

[31]  Gabriel A. Rincon-Mora,et al.  Voltage References: From Diodes to Precision High-Order Bandgap Circuits , 2001 .

[32]  Ralf Brederlow,et al.  An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.

[33]  Ze-kun Zhou,et al.  A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  Xi Qu,et al.  A Resistorless CMOS Voltage Reference Based on Mutual Compensation of $V_{T}$ and $V_{\rm TH}$ , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  David Blaauw,et al.  A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.