A 0.75‐V, 4‐μW, 15‐ppm/°C, 190 °C temperature range, voltage reference
暂无分享,去创建一个
[1] Fengqi Yu,et al. A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.
[2] Kenji Taniguchi,et al. An Area-Efficient CMOS Bandgap Reference Utilizing a Switched-Current Technique , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.
[3] G. Iannaccone,et al. A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[4] Y. Amemiya,et al. A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.
[5] Nobutaka Kuroki,et al. 1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.
[6] J. Fellrath,et al. CMOS analog integrated circuits based on weak inversion operations , 1977 .
[7] Gabriel A. Rincon-Mora,et al. A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference , 1998, IEEE J. Solid State Circuits.
[8] Ka Nang Leung,et al. A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.
[9] Y. Tsividis. Accurate analysis of temperature effects in I/SUB c/V/SUB BE/ characteristics with application to bandgap reference sources , 1980, IEEE Journal of Solid-State Circuits.
[10] Behzad Razavi,et al. Design of Analog CMOS Integrated Circuits , 1999 .
[11] Clyde Washburn,et al. An ultra-thin oxide sub-1 V CMOS bandgap voltage reference , 2014, Int. J. Circuit Theory Appl..
[12] Athanasios Tsitouras,et al. A sub-1V supply CMOS voltage reference generator , 2012, Int. J. Circuit Theory Appl..
[13] Julius Georgiou,et al. A novel CMOS Bandgap reference circuit with improved high-order temperature compensation , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
[14] Yannis Tsividis,et al. Operation and Modeling of the Mos Transistor (The Oxford Series in Electrical and Computer Engineering) , 2004 .
[15] Tor Sverre Lande,et al. A Sub-$\mu{\rm W}$ Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[16] C. Fiocchi,et al. Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.
[17] K. Sakui,et al. A CMOS bandgap reference circuit with sub-1-V operation , 1999 .
[18] G. Palumbo,et al. A low-voltage low-power voltage reference based on subthreshold MOSFETs , 2003, IEEE J. Solid State Circuits.
[19] Abdelhalim Bendali,et al. A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[20] Julius Georgiou,et al. An all-subthreshold, 0.75V supply, 2ppm/°C, CMOS Voltage Reference , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).
[21] Giuseppe Iannaccone,et al. A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.
[22] Ze-kun Zhou,et al. A CMOS Voltage Reference Based on Mutual Compensation of Vtn and Vtp , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.
[23] Hongchin Lin,et al. A low-voltage band-gap reference circuit with second-order analyses , 2011, Int. J. Circuit Theory Appl..
[24] Yiqiang Zhao,et al. A high-order curvature-corrected CMOS bandgap voltage reference with constant current technique , 2014, Int. J. Circuit Theory Appl..
[25] Julius Georgiou,et al. A Novel Wide-Temperature-Range, 3.9 ppm/$^{\circ}$C CMOS Bandgap Reference Circuit , 2012, IEEE Journal of Solid-State Circuits.
[26] Giuseppe Iannaccone,et al. A picopower temperature-compensated, subthreshold CMOS voltage reference , 2014, Int. J. Circuit Theory Appl..
[27] Jeongjin Roh,et al. A 1.2-V 4.2- ppm°C High-Order Curvature-Compensated CMOS Bandgap Reference. , 2015 .
[28] Gaetano Palumbo,et al. A detailed analysis of power-supply noise attenuation in bandgap voltage references , 2003 .
[29] Jeongjin Roh,et al. A 1.2-V 4.2- $\hbox{ppm}/^{\circ}\hbox{C}$ High-Order Curvature-Compensated CMOS Bandgap Reference , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[30] Giuseppe de Vita,et al. A Sub-1-V, 10 ppm/ $^{\circ}$C, Nanopower Voltage Reference Generator , 2007, IEEE Journal of Solid-State Circuits.
[31] Gabriel A. Rincon-Mora,et al. Voltage References: From Diodes to Precision High-Order Bandgap Circuits , 2001 .
[32] Ralf Brederlow,et al. An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.
[33] Ze-kun Zhou,et al. A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.
[34] Xi Qu,et al. A Resistorless CMOS Voltage Reference Based on Mutual Compensation of $V_{T}$ and $V_{\rm TH}$ , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.
[35] David Blaauw,et al. A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.