Contour Correspondence via Ant Colony Optimization

We formulate contour correspondence as a Quadratic Assignment Problem (QAP), incorporating proximity information. By maintaining the neighborhood relation between points this way, we show that better matching results are obtained in practice. We propose the first Ant Colony Optimization (ACO) algorithm specifically aimed at solving the QAP-based shape correspondence problem. Our ACO framework is flexible in the sense that it can handle general point correspondence, but also allows extensions, such as order preservation, for the more specialized contour matching problem. Various experiments are presented which demonstrate that this approach yields high-quality correspondence results and is computationally efficient when compared to other methods.

[1]  Trevor Darrell,et al.  Fast contour matching using approximate earth mover's distance , 2004, CVPR 2004.

[2]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[3]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[6]  Baining Guo,et al.  Perceptually based approach for planar shape morphing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[7]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[8]  Gershon Elber,et al.  Model fabrication using surface layout projection , 1995, Comput. Aided Des..

[9]  Marcel Körtgen,et al.  3D Shape Matching with 3D Shape Contexts , 2003 .

[10]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[11]  Gershon Elber,et al.  Image Morphing with Feature Preserving Texture , 1999, Comput. Graph. Forum.

[12]  Nancy M. Amato,et al.  Simultaneous shape decomposition and skeletonization , 2006, SPM '06.

[13]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[14]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[15]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[17]  Simon Kolmanič,et al.  A New Approach in CAD System for Designing Shoes , 2003 .

[18]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[19]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[20]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[21]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, CACM.

[24]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[25]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[27]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  Marco Attene,et al.  Mesh Segmentation - A Comparative Study , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[30]  Hao Zhang,et al.  Non-Rigid Spectral Correspondence of Triangle Meshes , 2007, Int. J. Shape Model..

[31]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[32]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[33]  Michael Garland,et al.  Curvature maps for local shape comparison , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[34]  Johan Karlsson,et al.  A Ground Truth Correspondence Measure for Benchmarking , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[35]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[36]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[37]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[38]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[39]  Alfred M. Bruckstein,et al.  Matching Two-Dimensional Articulated Shapes Using Generalized Multidimensional Scaling , 2006, AMDO.

[40]  Kenneth R. Sloan,et al.  Surfaces from contours , 1992, TOGS.

[41]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[42]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[43]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Robert D. Nowak,et al.  Robust contour matching via the order-preserving assignment problem , 2006, IEEE Transactions on Image Processing.

[45]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[46]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[47]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[48]  Charlie C. L. Wang,et al.  Optimal Boundary Triangulations of an Interpolating Ruled Surface , 2005, J. Comput. Inf. Sci. Eng..