Projectors in the Virtual Temperley-Lieb Algebra

We present a method of defining projectors in the virtual Temperley-Lieb algebra, that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. We show that the projectors have similar properties with the Jones-Wenzl projectors, and contain an extra property which is associated with the virtual generator elements, that is, the product of a projector with a virtual generator is unchanged. We also show the uniqueness of the projector fn in terms of its axiomatic properties in the virtual Temperley-Lieba algebra V TLn(d). Finally, we find the coefficients of fn and give an explicit formula for the projector fn. keywords : virtual Temperley-Lieb algebra; projector; recurrence formula; coefficient. Corresponding author

[1]  Bart J. Frenk,et al.  Brauer algebras of simply laced type , 2007, 0704.2732.

[2]  Louis H. Kauffman,et al.  PERMUTATION AND ITS PARTIAL TRANSPOSE , 2006 .

[3]  Kauffman Monoids , 2000 .

[4]  Virtual Knot Diagrams and the Witten-Reshetikhin-Turaev Invariant , 2004, math/0407407.

[5]  Vaughan F. R. Jones Index for subfactors , 1983 .

[6]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[7]  V. Manturov,et al.  Virtual Knots: The State of the Art , 2012 .

[8]  C. Rourke,et al.  Braid presentation of virtual knots and welded knots , 2000 .

[9]  Knot Diagrammatics , 2004, math/0410329.

[10]  Jingyan Li,et al.  Virtual braids, virtual Temperley-Lieb algebra and f-polynomial , 2017 .

[11]  L. Kauffman,et al.  Virtual Braids , 2004, math/0407349.

[12]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[13]  M. Thistlethwaite,et al.  Handbook of knot theory , 2005 .

[14]  Louis H. Kauffman,et al.  $q$ - Deformed Spin Networks, Knot Polynomials and Anyonic Topological Quantum Computation , 2006 .

[15]  G. Naber,et al.  Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .

[16]  A. Ocneanu The classification of subgroups of quantum SU(N) , 2000 .

[17]  P. Fendley,et al.  Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.

[18]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[19]  W. B. R. Lickorish,et al.  Three-manifolds and the Temperley-Lieb algebra , 1991 .