Projectors in the Virtual Temperley-Lieb Algebra
暂无分享,去创建一个
[1] Bart J. Frenk,et al. Brauer algebras of simply laced type , 2007, 0704.2732.
[2] Louis H. Kauffman,et al. PERMUTATION AND ITS PARTIAL TRANSPOSE , 2006 .
[3] Kauffman Monoids , 2000 .
[4] Virtual Knot Diagrams and the Witten-Reshetikhin-Turaev Invariant , 2004, math/0407407.
[5] Vaughan F. R. Jones. Index for subfactors , 1983 .
[6] Dorit Aharonov,et al. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.
[7] V. Manturov,et al. Virtual Knots: The State of the Art , 2012 .
[8] C. Rourke,et al. Braid presentation of virtual knots and welded knots , 2000 .
[9] Knot Diagrammatics , 2004, math/0410329.
[10] Jingyan Li,et al. Virtual braids, virtual Temperley-Lieb algebra and f-polynomial , 2017 .
[11] L. Kauffman,et al. Virtual Braids , 2004, math/0407349.
[12] Louis H. Kauffman. Virtual Knot Theory , 1999, Eur. J. Comb..
[13] M. Thistlethwaite,et al. Handbook of knot theory , 2005 .
[14] Louis H. Kauffman,et al. $q$ - Deformed Spin Networks, Knot Polynomials and Anyonic Topological Quantum Computation , 2006 .
[15] G. Naber,et al. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .
[16] A. Ocneanu. The classification of subgroups of quantum SU(N) , 2000 .
[17] P. Fendley,et al. Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.
[18] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .
[19] W. B. R. Lickorish,et al. Three-manifolds and the Temperley-Lieb algebra , 1991 .