The symmetric group defies strong Fourier sampling

We resolve the question of whether Fourier sampling can efficiently solve the hidden subgroup problem in general groups. Specifically, we show that the hidden subgroup problem in the symmetric group cannot be efficiently solved by strong Fourier sampling. Indeed we prove the stronger statement that no measurement of a single coset state can reveal more than an exponentially small amount of information about the identity of the hidden subgroup, in the special case relevant to the graph isomorphism problem.

[1]  Dave Bacon,et al.  Optimal measurements for the dihedral hidden subgroup problem , 2005, Chic. J. Theor. Comput. Sci..

[2]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[3]  P. Høyer Efficient Quantum Transforms , 1997, quant-ph/9702028.

[4]  Julia Kempe,et al.  The hidden subgroup problem and permutation group theory , 2004, SODA '05.

[5]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[6]  S. Kerov,et al.  Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis , 2003 .

[7]  Alexander Russell,et al.  For distinguishing conjugate hidden subgroups, the pretty good measurement is as good as it gets , 2007, Quantum Inf. Comput..

[8]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[9]  U. Vazirani On the power of quantum computation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Sean Hallgren,et al.  An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[11]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[12]  Oded Regev Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..

[13]  Martin Rötteler,et al.  Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.

[14]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[15]  Alexander Russell,et al.  Generic quantum Fourier transforms , 2004, SODA '04.

[16]  Pawel Wocjan,et al.  On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems , 2007, Quantum Inf. Comput..

[17]  Sean Hallgren,et al.  Quantum Fourier sampling simplified , 1999, STOC '99.

[18]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[19]  F. Gall,et al.  An Efficient Algorithm for the Hidden Subgroup Problem over a Class of Semi-direct Product Groups , 2004 .

[20]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[21]  Frédéric Magniez,et al.  Hidden translation and orbit coset in quantum computing , 2002, STOC '03.

[22]  Yuval Roichman,et al.  Upper bound on the characters of the symmetric groups , 1996 .

[23]  Frédéric Magniez,et al.  Efficient Quantum Algorithms For Some Instances Of The Non-Abelian Hidden Subgroup Problem , 2003, Int. J. Found. Comput. Sci..

[24]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[25]  T. Beth,et al.  Polynomial-Time Solution to the Hidden Subgroup Problem for a Class of non-abelian Groups , 1998, quant-ph/9812070.

[26]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[27]  Dave Bacon,et al.  From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[28]  Alexander Russell,et al.  The Symmetric Group Defies Strong Fourier Sampling: Part I , 2005, ArXiv.

[29]  Mark Ettinger,et al.  On Quantum Algorithms for Noncommutative Hidden Subgroups , 1998, STACS.

[30]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[31]  Lawrence Ip Shor ’ s Algorithm is Optimal , 2003 .

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[34]  Alexander Russell,et al.  The power of basis selection in fourier sampling: hidden subgroup problems in affine groups , 2004, SODA '04.

[35]  Alexander Russell,et al.  Explicit Multiregister Measurements for Hidden Subgroup Problems; or, Fourier Sampling Strikes Back , 2005 .

[36]  Alexander Russell,et al.  Quantum algorithms for Simon's problem over general groups , 2006, SODA '07.

[37]  Steven Roman Advanced Linear Algebra , 1992 .

[38]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[39]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[40]  Emanuel Knill,et al.  The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..