Online Decision Making with High-Dimensional Covariates

[1]  David A. Sontag,et al.  Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors , 2015, Big Data.

[2]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[3]  Mark Braverman,et al.  Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study , 2014, PloS one.

[4]  Benjamin Van Roy,et al.  Learning to Optimize via Posterior Sampling , 2013, Math. Oper. Res..

[5]  Franklin Dexter,et al.  The Timing of Staffing Decisions in Hospital Operating Rooms: Incorporating Workload Heterogeneity into the Newsvendor Problem , 2012, Manuf. Serv. Oper. Manag..

[6]  A. Belloni,et al.  Inference on Treatment Effects after Selection Amongst High-Dimensional Controls , 2011, 1201.0224.

[7]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[8]  John N. Tsitsiklis,et al.  Linearly Parameterized Bandits , 2008, Math. Oper. Res..

[9]  Michel Wedel,et al.  Challenges and opportunities in high-dimensional choice data analyses , 2008 .

[10]  E. Candès,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[11]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[12]  D. Pollock,et al.  National surveillance of emergency department visits for outpatient adverse drug events. , 2006, JAMA.

[13]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[14]  A. Tsybakov,et al.  Optimal aggregation of classifiers in statistical learning , 2003 .

[15]  Manfred K. Warmuth,et al.  Exponentiated Gradient Versus Gradient Descent for Linear Predictors , 1997, Inf. Comput..

[16]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .