Structure and transport behavior of In-filled cobalt rhodium antimonide skutterudites

[1]  S. Rouvimov,et al.  Rattler-seeded InSb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics , 2012 .

[2]  Jihui Yang,et al.  Realization of high thermoelectric performance in n-type partially filled skutterudites , 2011 .

[3]  E. Bauer,et al.  Compositional dependence of the thermoelectric properties of (SrxBaxYb1 − 2x)yCo4Sb12 skutterudites , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  Jun Li,et al.  Thermoelectric properties of indium-filled InxRh4Sb12 skutterudites , 2011 .

[5]  C. Uher,et al.  Thermoelectric Properties of Triple-Filled BaxYbyInzCo4Sb12 Skutterudites , 2011 .

[6]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[7]  Qingjie Zhang,et al.  Thermal Stability of Barium and Indium Double-Filled Skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 Coated by SiO2 Nanoparticles , 2010 .

[8]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[9]  T. Tritt Thermal Conductivity: Theory, Properties, and Applications , 2010 .

[10]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[11]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[12]  R. Mallik,et al.  Thermoelectric properties of InzCo4Sb12 skutterudites , 2008 .

[13]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[14]  K. Wojciechowski Study of transport properties of the Co1−xRhxSb3 , 2007 .

[15]  A. Galeckas,et al.  Fundamental band edge absorption in nominally undoped and doped 4H‐SiC , 2007 .

[16]  B. Reisner,et al.  Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO. , 2007 .

[17]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[18]  T. He,et al.  Thermoelectric Properties of Indium-Filled Skutterudites , 2006 .

[19]  C. Uher,et al.  Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1-xAsx)3 , 2005 .

[20]  E. Ivers-Tiffée,et al.  Annealing Effects on Structural and Dielectric Properties of Tunable BZT Thin Films , 2004 .

[21]  G. Nolas,et al.  Thermal Conductivity of Semiconductors , 2004 .

[22]  Yu Zhang,et al.  Nanostructured Co1-xNixSb3 skutterudites : Synthesis, thermoelectric properties, and theoretical modeling , 2003 .

[23]  E. Bauer,et al.  Physical properties of skutterudites YbxM4Sb12, M = Fe, Co, Rh, Ir , 2000 .

[24]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[25]  S. Katsuyama,et al.  Thermoelectric properties of the skutterudite Co1−xFexSb3 system , 1998 .

[26]  Jean-Pierre Fleurial,et al.  Properties of single crystalline semiconducting CoSb3 , 1996 .

[27]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[28]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[29]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[30]  Paul G. Klemens,et al.  Thermal conductivity of solids , 1977 .

[31]  B. Post X‐ray diffraction procedures for polycrystalline and amorphous materials. Harold P. Klug and Leroy E. Alexander, John Wiley & Sons, New York, 1974, pp. 960. $37.50 , 1975 .

[32]  N. Halder,et al.  Analysis of the Broadening of Powder Pattern Peaks Using Variance, Integral Breadth, and Fourier Coefficients of the Line Profile , 1965 .