Structure and transport behavior of In-filled cobalt rhodium antimonide skutterudites
暂无分享,去创建一个
[1] S. Rouvimov,et al. Rattler-seeded InSb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics , 2012 .
[2] Jihui Yang,et al. Realization of high thermoelectric performance in n-type partially filled skutterudites , 2011 .
[3] E. Bauer,et al. Compositional dependence of the thermoelectric properties of (SrxBaxYb1 − 2x)yCo4Sb12 skutterudites , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[4] Jun Li,et al. Thermoelectric properties of indium-filled InxRh4Sb12 skutterudites , 2011 .
[5] C. Uher,et al. Thermoelectric Properties of Triple-Filled BaxYbyInzCo4Sb12 Skutterudites , 2011 .
[6] Xiangyang Huang,et al. High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .
[7] Qingjie Zhang,et al. Thermal Stability of Barium and Indium Double-Filled Skutterudite Ba0.3In0.2Co3.95Ni0.05Sb12 Coated by SiO2 Nanoparticles , 2010 .
[8] M. Kanatzidis. Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .
[9] T. Tritt. Thermal Conductivity: Theory, Properties, and Applications , 2010 .
[10] M. Kanatzidis,et al. New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.
[11] Han Li,et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .
[12] R. Mallik,et al. Thermoelectric properties of InzCo4Sb12 skutterudites , 2008 .
[13] G. J. Snyder,et al. Complex thermoelectric materials. , 2008, Nature materials.
[14] K. Wojciechowski. Study of transport properties of the Co1−xRhxSb3 , 2007 .
[15] A. Galeckas,et al. Fundamental band edge absorption in nominally undoped and doped 4H‐SiC , 2007 .
[16] B. Reisner,et al. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO. , 2007 .
[17] Terry M. Tritt,et al. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .
[18] T. He,et al. Thermoelectric Properties of Indium-Filled Skutterudites , 2006 .
[19] C. Uher,et al. Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1-xAsx)3 , 2005 .
[20] E. Ivers-Tiffée,et al. Annealing Effects on Structural and Dielectric Properties of Tunable BZT Thin Films , 2004 .
[21] G. Nolas,et al. Thermal Conductivity of Semiconductors , 2004 .
[22] Yu Zhang,et al. Nanostructured Co1-xNixSb3 skutterudites : Synthesis, thermoelectric properties, and theoretical modeling , 2003 .
[23] E. Bauer,et al. Physical properties of skutterudites YbxM4Sb12, M = Fe, Co, Rh, Ir , 2000 .
[24] George S. Nolas,et al. SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .
[25] S. Katsuyama,et al. Thermoelectric properties of the skutterudite Co1−xFexSb3 system , 1998 .
[26] Jean-Pierre Fleurial,et al. Properties of single crystalline semiconducting CoSb3 , 1996 .
[27] Martin T. Dove,et al. Introduction to Lattice Dynamics: Contents , 1993 .
[28] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[29] Armel Le Bail,et al. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .
[30] Paul G. Klemens,et al. Thermal conductivity of solids , 1977 .
[31] B. Post. X‐ray diffraction procedures for polycrystalline and amorphous materials. Harold P. Klug and Leroy E. Alexander, John Wiley & Sons, New York, 1974, pp. 960. $37.50 , 1975 .
[32] N. Halder,et al. Analysis of the Broadening of Powder Pattern Peaks Using Variance, Integral Breadth, and Fourier Coefficients of the Line Profile , 1965 .