Physical properties of MTA Fillapex sealer.

[1]  B. Gomes,et al.  Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. , 2013, Journal of endodontics.

[2]  L. Â. Cintra,et al.  Rat tissue reaction to MTA FILLAPEX®. , 2012, Dental traumatology : official publication of International Association for Dental Traumatology.

[3]  J. V. Baldi,et al.  Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube. , 2012, International endodontic journal.

[4]  D. Grana,et al.  Reaction of rat subcutaneous connective tissue to a mineral trioxide aggregate-based and a zinc oxide and eugenol sealer. , 2012, Journal of endodontics.

[5]  S. Báo,et al.  Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture. , 2012, Journal of endodontics.

[6]  M. Gandolfi,et al.  Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. , 2012, International endodontic journal.

[7]  J. D. PÉcora,et al.  Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. , 2012, International endodontic journal.

[8]  I. Balducci,et al.  Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. , 2012, Journal of endodontics.

[9]  P. Taddei,et al.  Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. , 2011, Dental materials : official publication of the Academy of Dental Materials.

[10]  M. Buzalaf,et al.  pH, calcium ion release, and setting time of an experimental mineral trioxide aggregate-based root canal sealer. , 2011, Journal of endodontics.

[11]  Terry Yuan-Fang Chen,et al.  Spatially resolved assessments of composite shrinkage in MOD restorations using a digital-image-correlation technique. , 2011, Dental materials : official publication of the Academy of Dental Materials.

[12]  J. D. PÉcora,et al.  Evaluation of physicochemical properties of four root canal sealers. , 2011, International endodontic journal.

[13]  M. Gandolfi,et al.  MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability. , 2010, International endodontic journal.

[14]  R. A. Bernardes,et al.  Influence of calcium hydroxide association on the physical properties of AH Plus. , 2010, Journal of endodontics.

[15]  M. Torabinejad,et al.  Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. , 2010, Journal of endodontics.

[16]  F. Tay,et al.  Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. , 2009, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[17]  M. Versiani,et al.  A comparative study of physicochemical properties of AH Plus, Epiphany, and Epiphany SE root canal sealers. , 2009, International endodontic journal.

[18]  R. Arnold,et al.  Periapical inflammation and bacterial penetration after coronal inoculation of dog roots filled with RealSeal 1 or Thermafil. , 2009, Journal of endodontics.

[19]  C. Bramante,et al.  The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. , 2009, Journal of endodontics.

[20]  G. P. Stewart,et al.  Chemical modification of proroot mta to improve handling characteristics and decrease setting time. , 2007, Journal of endodontics.

[21]  B. Gomes,et al.  Filling of artificial lateral canals and microleakage and flow of five endodontic sealers. , 2007, International endodontic journal.

[22]  M. Sousa-Neto,et al.  A comparative study of physicochemical properties of AH PlusTM and EpiphanyTM root canal sealants , 2006 .

[23]  M. Walker,et al.  Effect of setting conditions on mineral trioxide aggregate flexural strength. , 2006, Journal of endodontics.

[24]  Sheng Lin-Gibson,et al.  Combinatorial investigation of the structure-properties characterization of photopolymerized dimethacrylate networks. , 2006, Biomaterials.

[25]  D. Ørstavik Materials used for root canal obturation: technical, biological and clinical testing , 2005 .

[26]  E. T. Koh,et al.  Properties of a new root-end filling material. , 2005, Journal of endodontics.

[27]  K. Gulabivala,et al.  A comparative study of selected physical properties of five root-canal sealers. , 2003, International endodontic journal.

[28]  A. Akamine,et al.  Water absorption of poly(methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride. , 2003, Biomaterials.

[29]  V. Tserki,et al.  Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. , 2003, Biomaterials.

[30]  D. Pashley,et al.  Adhesion of endodontic sealers to dentin and gutta-percha. , 2002, Journal of endodontics.

[31]  J. Nicholson,et al.  An evaluation of accelerated Portland cement as a restorative material. , 2002, Biomaterials.

[32]  P. Wesselink,et al.  Diminished leakage along root canals filled with gutta-percha without sealer over time: a laboratory study. , 2000, International endodontic journal.

[33]  M. Beatty,et al.  Effect of crosslinking agent content, monomer functionality, and repeat unit chemistry on properties of unfilled resins. , 1993, Journal of biomedical materials research.

[34]  H Schilder,et al.  Filling root canals in three dimensions. , 1967, Dental clinics of North America.