mirTarPri: Improved Prioritization of MicroRNA Targets through Incorporation of Functional Genomics Data

MicroRNAs (miRNAs) are a class of small (19–25 nt) non-coding RNAs. This important class of gene regulator downregulates gene expression through sequence-specific binding to the 3′untranslated regions (3′UTRs) of target mRNAs. Several computational target prediction approaches have been developed for predicting miRNA targets. However, the predicted target lists often have high false positive rates. To construct a workable target list for subsequent experimental studies, we need novel approaches to properly rank the candidate targets from traditional methods. We performed a systematic analysis of experimentally validated miRNA targets using functional genomics data, and found significant functional associations between genes that were targeted by the same miRNA. Based on this finding, we developed a miRNA target prioritization method named mirTarPri to rank the predicted target lists from commonly used target prediction methods. Leave-one-out cross validation has proved to be successful in identifying known targets, achieving an AUC score up to 0. 84. Validation in high-throughput data proved that mirTarPri was an unbiased method. Applying mirTarPri to prioritize results of six commonly used target prediction methods allowed us to find more positive targets at the top of the prioritized candidate list. In comparison with other methods, mirTarPri had an outstanding performance in gold standard and CLIP data. mirTarPri was a valuable method to improve the efficacy of current miRNA target prediction methods. We have also developed a web-based server for implementing mirTarPri method, which is freely accessible at http://bioinfo.hrbmu.edu.cn/mirTarPri.

[1]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[2]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[3]  Gary D. Bader,et al.  BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways , 2000, Bioinform..

[4]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[5]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[6]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[7]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[8]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[9]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[10]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[11]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[12]  Giovanni De Micheli,et al.  Prediction of regulatory modules comprising microRNAs and target genes , 2005, ECCB/JBI.

[13]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[14]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[15]  R. Pillai MicroRNA function: multiple mechanisms for a tiny RNA? , 2005, RNA.

[16]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[17]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[18]  Angel Rubio,et al.  Correlation between gene expression and GO semantic similarity , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[19]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[20]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[21]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[22]  Holger Fröhlich,et al.  GOSim – an R-package for computation of information theoretic GO similarities between terms and gene products , 2007, BMC Bioinformatics.

[23]  Oliver Hobert,et al.  Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions , 2006, Nature Structural &Molecular Biology.

[24]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[25]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[26]  Byoung-Tak Zhang,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm045 Data and text mining Discovery of microRNA–mRNA modules via population-based probabilistic learning , 2007 .

[27]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[28]  F. Ahmed Role of miRNA in carcinogenesis and biomarker selection: a methodological view , 2007, Expert review of molecular diagnostics.

[29]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[30]  Wen-Hsiung Li,et al.  MicroRNA regulation of human protein protein interaction network. , 2007, RNA.

[31]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[32]  Tu Bao Ho,et al.  Finding microRNA regulatory modules in human genome using rule induction , 2008, BMC Bioinformatics.

[33]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[34]  Qizhi Yao,et al.  MicroRNAs: Control and Loss of Control in Human Physiology and Disease , 2009, World Journal of Surgery.

[35]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[36]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[37]  Chao Cheng,et al.  Inferring MicroRNA Activities by Combining Gene Expression with MicroRNA Target Prediction , 2008, PloS one.

[38]  Chunxiang Zhang,et al.  MicroRNomics: a newly emerging approach for disease biology. , 2008, Physiological genomics.

[39]  Brendan J. Frey,et al.  Comparing Sequence and Expression for Predicting microRNA Targets Using GenMIR3 , 2007, Pacific Symposium on Biocomputing.

[40]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[41]  Phillip W. Lord,et al.  Semantic Similarity in Biomedical Ontologies , 2009, PLoS Comput. Biol..

[42]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[43]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[44]  Sanghamitra Bandyopadhyay,et al.  TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples , 2009, Bioinform..

[45]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[46]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[47]  Yufei Huang,et al.  Survey of Computational Algorithms for MicroRNA Target Prediction , 2009, Current genomics.

[48]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[49]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[50]  J. Bertino,et al.  MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. , 2009, Pharmacogenomics.

[51]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[52]  Peter T Nelson,et al.  The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. , 2010, Journal of molecular biology.

[53]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[54]  Gautier Koscielny,et al.  Ensembl Genomes: Extending Ensembl across the taxonomic space , 2009, Nucleic Acids Res..

[55]  Gabriele Sales,et al.  MAGIA, a web-based tool for miRNA and Genes Integrated Analysis , 2010, Nucleic Acids Res..

[56]  Fons J. Verbeek,et al.  Comparison and Integration of Target Prediction Algorithms for microRNA Studies , 2010, J. Integr. Bioinform..

[57]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[58]  Ivan Merelli,et al.  myMIR: a genome-wide microRNA targets identification and annotation tool , 2011, Briefings Bioinform..

[59]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[60]  Shangwei Ning,et al.  Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer , 2011, Nucleic acids research.

[61]  Peng Wang,et al.  A novel method to quantify gene set functional association based on gene ontology , 2012, Journal of The Royal Society Interface.

[62]  Tim Beißbarth,et al.  Detection of Simultaneous Group Effects in MicroRNA Expression and Related Target Gene Sets , 2012, PloS one.

[63]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..