Simple chaotic systems and circuits

Many new chaotic systems with algebraically simple representations are described. These systems involve a single third-order autonomous ordinary differential equation (jerk equation) with various nonlinearities. Piecewise linear functions are emphasized to permit easy electronic implementation with diodes and operational amplifiers. Several new simple and robust chaotic electrical circuits are described and evaluated.

[1]  N. Rulkov,et al.  MUTUAL SYNCHRONIZATION OF CHAOTIC SELF-OSCILLATORS WITH DISSIPATIVE COUPLING , 1992 .

[2]  Ömer Morgül,et al.  Inductorless realisation of Chua oscillator , 1995 .

[3]  Hans Peter Gottlieb,et al.  What is the Simplest Jerk Function that Gives Chaos , 1996 .

[4]  Leon O. Chua,et al.  The double scroll , 1985 .

[5]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[6]  O. Rössler An equation for continuous chaos , 1976 .

[7]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[8]  Nikolai F. Rulkov,et al.  EXPERIMENTAL EVIDENCE FOR SYNCHRONOUS BEHAVIOR OF CHAOTIC NONLINEAR OSCILLATORS WITH UNIDIRECTIONAL OR MUTUAL DRIVING , 1994 .

[9]  Alain Arneodo,et al.  Oscillators with chaotic behavior: An illustration of a theorem by Shil'nikov , 1982 .

[10]  Julien Clinton Sprott,et al.  Elementary chaotic flow , 1999 .

[11]  Leon O. Chua,et al.  Designing non-linear single OP-AMP circuits: A cook-book approach , 1985 .

[12]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[13]  Jack Heidel,et al.  Nonchaotic behaviour in three-dimensional quadratic systems II. The conservative case , 1999 .

[14]  M. Komuro Birth and death of the double scroll , 1985, IEEE Conference on Decision and Control.

[15]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Julien Clinton Sprott,et al.  Some simple chaotic jerk functions , 1997 .

[17]  Stefan J. Linz,et al.  Nonlinear dynamical models and jerky motion , 1997 .

[18]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  Ahmed S. Elwakil,et al.  Two Modified for Chaos Negative Impedance Converter Op Amp Oscillators with Symmetrical and Antisymmetrical Nonlinearities , 1998 .

[21]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[22]  Alain Arneodo,et al.  Transition to stochasticity for a class of forced oscillators , 1979 .

[23]  Jack Heidel,et al.  ERRATUM: Non-chaotic behaviour in three-dimensional quadratic systems , 1997 .

[24]  S. M. Duffy,et al.  Circularly polarised aperture coupled microstrip antenna , 1995 .

[25]  Ralf Eichhorn,et al.  Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .

[26]  A. Tamasevicius,et al.  Double scroll in a simple '2D' chaotic oscillator , 1996 .