Rigid-body rotation of an electron cloud in divergent magnetic fields

For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.

[1]  N. Fisch,et al.  Ion acceleration in supersonically rotating magnetized-electron plasma , 2011 .

[2]  Christine Charles,et al.  Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster , 2011 .

[3]  M. Martínez-Sánchez,et al.  Laser-induced fluorescence velocity measurements of a diverging cusped-field thruster , 2011 .

[4]  A. Goncharov,et al.  Advances in Novel Plasma Devices Based on the Plasma Lens , 2009, IEEE Transactions on Plasma Science.

[5]  N. Fisch,et al.  Magnetic detachment and plume control in escaping magnetized plasma , 2008, Journal of Plasma Physics.

[6]  L. B. King,et al.  An Electron Trap for Studying Cross-Field Mobility in Hall Thrusters , 2008, IEEE Transactions on Plasma Science.

[7]  N. Fisch,et al.  Alpha channeling in a rotating plasma. , 2008, Physical review letters.

[8]  H. Tahara,et al.  Operational characteristics and plasma measurements in cylindrical Hall thrusters , 2007 .

[9]  A. Gallimore,et al.  Internal plasma potential measurements of a Hall thruster using plasma lens focusing , 2006 .

[10]  A. Fruchtman,et al.  Plasma lens and plume divergence in the Hall thruster , 2006 .

[11]  V. I. Volosov Aneutronic fusion on the base of asymmetrical centrifugal trap , 2006 .

[12]  Robert S. Jankovsky,et al.  High-specific impulse Hall thrusters, part 1: Influence of current density and magnetic field , 2006 .

[13]  C. Fendt Collimation of Astrophysical Jets: The Role of the Accretion Disk Magnetic Field Distribution , 2005, astro-ph/0511611.

[14]  M. Keidar,et al.  On the magnetic mirror effect in Hall thrusters , 2005 .

[15]  Boris N. Breizman,et al.  Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle , 2005 .

[16]  A. Morozov The conceptual development of stationary plasma thrusters , 2003 .

[17]  R. Miller,et al.  Band gap ion mass filter , 2002 .

[18]  A. Hassam,et al.  Velocity shear stabilization of centrifugally confined plasma. , 2001, Physical review letters.

[19]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[20]  A. Morozov,et al.  Fundamentals of Stationary Plasma Thruster Theory , 2000 .

[21]  N. Hershkowitz,et al.  Radial control of the electrostatic potential in a tandem mirror with quadrupole end cells , 1992 .