EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative

We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.

[1]  High resolution electrical characterisation of Ag-conducting heterogeneous chalcogenide glasses , 2010 .

[2]  Jeffrey M. McMahon Basic Electromagnetic Theory , 2011 .

[3]  A.M. Davis,et al.  Microelectronic circuits , 1983, Proceedings of the IEEE.

[4]  Eric Verploegen,et al.  Effects of thermal annealing upon the nanomorphology of poly(3-hexylselenophene)-PCBM blends. , 2011, Macromolecular rapid communications.

[5]  Andreas Stemmer,et al.  Surface potential mapping: A qualitative material contrast in SPM , 1997 .

[6]  Ping Liu,et al.  Design of High-Performance Regioregular Polythiophenes for Organic Thin-Film Transistors , 2005, Proceedings of the IEEE.

[7]  J. E. MacDonald,et al.  Quantitative electrostatic force microscopy-phase measurements , 2004 .

[8]  J. Nelson,et al.  The Influence of Substrate and Top Electrode on the Crystallization Dynamics of P3HT: PCBM Blends , 2012 .

[9]  Richard H. Friend,et al.  A microscopic view of charge transport in polymer transistors , 2004 .

[10]  Electrostatic force spectroscopy of near surface localized states , 2004, cond-mat/0409111.

[11]  H. Sirringhaus,et al.  Noncontact potentiometry of polymer field-effect transistors , 2002 .

[12]  E. Anderson,et al.  Scanned probe microscopy of electronic transport in carbon nanotubes. , 2000, Physical review letters.

[13]  Alessandro Giua,et al.  Analisi dei sistemi dinamici , 2006 .

[14]  J. E. MacDonald,et al.  Conductivity of macromolecular networks measured by electrostatic force microscopy , 2003 .

[15]  Holger Schönherr,et al.  Scanning Force Microscopy , 2004 .

[16]  B. Terris,et al.  Imaging of ferroelectric domain walls by force microscopy , 1990 .

[17]  Giorgio Ferrari,et al.  Dielectric-constant measurement of thin insulating films at low-frequency by nanoscale capacitance microscopy , 2007 .

[18]  Constantine H. Houpis,et al.  Feedback Control System Analysis and Synthesis , 1966 .

[19]  Sergei V. Kalinin,et al.  Local potential and polarization screening on ferroelectric surfaces , 2001 .

[20]  C. Riedel,et al.  Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy , 2009 .

[21]  D. Cahen,et al.  How Polycrystalline Devices Can Outperform Single‐Crystal Ones: Thin Film CdTe/CdS Solar Cells , 2004 .

[22]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[23]  J. Bird,et al.  Scanning gate microscopy of copper phthalocyanine field effect transistors , 2007 .

[24]  Paul Girard,et al.  Electrostatic force microscopy: principles and some applications to semiconductors , 2001 .

[25]  H. Kumar Wickramasinghe,et al.  High‐resolution capacitance measurement and potentiometry by force microscopy , 1988 .

[26]  M. Elliott,et al.  Self-assembled organic nanowires: a structural and electronic study , 2009 .

[27]  Olga Kazakova,et al.  Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. , 2011, Nano letters.

[28]  C. Riedel,et al.  Nanoscale dielectric properties of insulating thin films: from single point measurements to quantitative images. , 2010, Ultramicroscopy.

[29]  M. Dresselhaus,et al.  Electrostatic Force Spectroscopy and Imaging of Bi Wires: Spatially Resolved Quantum Confinement , 1999 .

[30]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[31]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[32]  D. R. Strachan,et al.  Surface potentials and layer charge distributions in few-layer graphene films. , 2008, Nano letters.

[33]  M. Stefancich,et al.  Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution , 2013, Nanotechnology.

[34]  N. García,et al.  Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors. , 2006, Physical review letters.

[35]  Christoph Brune,et al.  Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data. , 2013, Nanotechnology.

[36]  Deborah F. Pilkey,et al.  Computation of a Damping Matrix for Finite Element Model Updating , 1998 .

[37]  C. Riedel,et al.  Nanodielectric mapping of a model polystyrene-poly(vinyl acetate) blend by electrostatic force microscopy. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Richard H. Friend,et al.  Close look at charge carrier injection in polymer field-effect transistors , 2003 .

[39]  R.M. Gray,et al.  Communication systems: An introduction to signals and noise in electrical communication , 1976, Proceedings of the IEEE.

[40]  Hemantha K. Wickramasinghe,et al.  Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy , 1989 .

[41]  Samuele Lilliu,et al.  Inkjet-printed organic photodiodes , 2011 .

[42]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[43]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .