A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films

The nonlinear optical properties of 20 nm thick Ag films are investigated by time-resolved white- light continuum pump-probe experiments in both transmission and reflection mode. The dynamics of changes in permittivity Δe are measured at wavelengths between 500 to 700 nm. The data is fitted to a modified Drude model in the frequency domain and to a two-temperature model in the time domain. Changes in the individual Drude parameters are calculated as a function of time. A single, coherent model is proposed based on these fittings that describes the dynamics of the nonlinear optical properties of Ag, which could be used to model the nonlinear responses of multilayer structures containing thin films of Ag. The physical origins of the observed responses are discussed.

[1]  Robert W Boyd,et al.  Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. , 2004, Physical review letters.

[2]  A. Devižis,et al.  Ultrafast dynamics of the real and imaginary permittivity parts of a photoexcited silver layer revealed by surface plasmon resonance. , 2008, Applied optics.

[3]  W. E. Lawrence,et al.  Intraband optical conductivity sigma/omega,T/ of Cu, Ag, and Au - Contribution from electron-electron scattering , 1981 .

[4]  A. Nakamura,et al.  Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass , 1998 .

[5]  André Anders,et al.  Smoothing of ultrathin silver films by transition metal seeding , 2006 .

[6]  D. Aspnes Optical properties of thin films , 1982 .

[7]  Jean-Yves Bigot,et al.  Electron dynamics in metallic nanoparticles , 2000 .

[8]  R. Boyd Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility , 2020, Nonlinear Optics.

[9]  H. Savaloni,et al.  Substrate temperature dependence on the optical properties of Cu and Ag thin films , 2005 .

[10]  D. Lynch,et al.  Thermomodulation Spectra of Al, Au, and Cu , 1972 .

[11]  Huang,et al.  Optical and electrical properties of thin silver films grown under ion bombardment. , 1986, Physical review. B, Condensed matter.

[12]  D. Aspnes,et al.  Optical properties of Au: Sample effects , 1980 .

[13]  A. F. Turner,et al.  Induced Transmission in Absorbing Films Applied to Band Pass Filter Design , 1957 .

[14]  Zhanshan Wang,et al.  Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals. , 2009, Optics letters.

[15]  R. Rosei Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory , 1974 .

[16]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[17]  Rongfu Xiao,et al.  Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency , 1997 .

[18]  H. Savaloni,et al.  Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films , 2008 .

[19]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .

[20]  U. Grassano,et al.  d bands position and width in gold from very low temperature thermomodulation measurements , 1973 .

[21]  P. Winsemius,et al.  Temperature dependence of the optical properties of Au, Ag and Cu , 1976 .

[22]  H. Ehrenreich,et al.  Frequency dependence of the optical relaxation time in metals , 1982 .

[23]  Michael Scalora,et al.  Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures , 1998 .

[24]  R. Boyd,et al.  Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures. , 1999, Optics letters.

[25]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[26]  A. Lagendijk,et al.  Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. , 1995, Physical review. B, Condensed matter.

[27]  Michael Scalora,et al.  Transmissive properties of Ag/MgF2 photonic band gaps , 1998 .

[28]  J. H. Weaver,et al.  Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental , 1974 .

[29]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.

[30]  A. Lagendijk,et al.  Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film. , 1990, Physical review letters.

[31]  Mario Bertolotti,et al.  Nanotechnology of transparent metals for radio frequency electromagnetic shielding , 2003 .

[32]  N. D. Fatti,et al.  Nonequilibrium Electron Interactions in Metal Films , 1998, 0709.0815.

[33]  Mario Bertolotti,et al.  Accessing the optical limiting properties of metallo-dielectric photonic band gap structures , 2003 .

[34]  A. Ikushima,et al.  Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles , 1994 .

[35]  M. Larciprete,et al.  Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[37]  R. W. Christy,et al.  Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au , 1977 .