Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra

Abstract We report N2 and air foreign pressure broadening coefficients of more than twenty rovibrational transitions of water vapor in the 935-nm spectral region, and these measurements are compared to new theoretical calculations. The data were obtained using the frequency-stabilized cavity ring-down spectroscopy method, yielding relative uncertainties for the broadening parameters in the range 0.4–2.2%. The sensitivity of measured broadening parameters to the choice of line shape functions is discussed, and systematic differences between experimentally determined collisional broadening coefficients are shown for the cases when the observed line narrowing is interpreted in terms of Dicke-narrowing or the speed-dependence of the collisional broadening and shifting. Theoretical models of pressure broadening for these transitions agree with the measurements to within 4% for most transitions with an average relative difference of 0.63%.

[1]  T. Wilkerson,et al.  Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air , 1982 .

[2]  J. Buldyreva,et al.  Semiclassical calculations with exact trajectory for N2 rovibrational Raman linewidths at temperatures below 300 K , 1999 .

[3]  Paul R. Berman,et al.  Speed-dependent collisional width and shift parameters in spectral profiles , 1972 .

[4]  Jonathan Tennyson,et al.  The Water Vapor Spectrum in the Region 8600-15 000 cm(-1): Experimental and Theoretical Studies for a New Spectral Line Database. , 2001, Journal of molecular spectroscopy.

[5]  J. Tennyson,et al.  A PROGRAM SUITE FOR THE CALCULATION OF RO-VIBRATIONAL SPECTRA OF TRIATOMIC-MOLECULES , 1989 .

[6]  Jonathan Tennyson,et al.  Spectroscopically determined potential energy surface of H216O up to 25 000 cm−1 , 2003 .

[7]  J. Tennyson,et al.  Ab initio calculation of the rotation–vibration energy levels of H3+ and its isotopomers to spectroscopic accuracy , 1999 .

[8]  J. Tennyson,et al.  High-Accuracy ab Initio Rotation-Vibration Transitions for Water , 2003, Science.

[9]  Temkin,et al.  Effect of speed-changing collisions on spectral line shape. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  Ann Carine Vandaele,et al.  Water vapor line parameters in the 13 000-9250 cm-1 region. , 2003 .

[11]  V. Saveliev,et al.  Half-width temperature dependence of nitrogen broadened lines in the ν2 band of H2O , 2004 .

[12]  J. Hodges,et al.  Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration , 2006 .

[13]  J. Hodges,et al.  Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy , 2006 .

[14]  G. Wlodarczak,et al.  Lineshape study of the J =3←2 rotational transition of CO perturbed by N 2 and O 2 , 2000 .

[15]  B. Lemoine,et al.  Infrared HCN Lineshapes as a Test of Galatry and Speed-Dependent Voigt Profiles , 2002 .

[16]  Edward F. Valeev,et al.  CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule. , 2006, The Journal of chemical physics.

[17]  J. Hodges,et al.  Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy , 2004 .

[18]  Joseph T. Hodges,et al.  High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions , 2007 .

[19]  A. Pine Line mixing sum rules for the analysis of multiplet spectra. , 1997 .

[20]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[21]  Yu. N. Ponomarev,et al.  Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2 and He in the 1.39 μm region: experiment and calculations , 2004 .

[22]  Antonio Sasso,et al.  An accurate comparison of lineshape models on H2O lines in the spectral region around 3 μm , 2004 .

[23]  L. Galatry,et al.  Simultaneous Effect of Doppler and Foreign Gas Broadening on Spectral Lines , 1961 .

[24]  Alain Valentin,et al.  Diode-Laser Spectroscopy: Line Profiles of H2O in the Region of 1.39 μm , 2001 .

[25]  A. Pine Line shape asymmetries in Ar‐broadened HF(v=1–0) in the Dicke‐narrowing regime , 1994 .

[26]  V. Malathy Devi,et al.  Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment , 2005 .

[27]  M. Nelkin,et al.  Simple Binary Collision Model for Van Hove's G s ( r , t ) , 1964 .

[28]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[29]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[30]  D. Schwenke Variational Calculations of Rovibrational Energy Levels and Transition Intensities for Tetratomic Molecules , 1996 .

[31]  Robert A. Toth,et al.  Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H2O , 2005 .

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  Sergei G. Rautian,et al.  Reviews of Topical Problems: the Effect of Collisions on the Doppler Broadening of Spectral Lines , 1967 .

[34]  G. Blanquet,et al.  On the Speed-Dependent Hard Collision Lineshape Models: Application to C2H2 Perturbed by Xe , 1997, Journal of molecular spectroscopy.

[35]  D. Robert,et al.  Short range force effects in semiclassical molecular line broadening calculations , 1979 .

[36]  R. Tolchenov,et al.  A new ab initio ground-state dipole moment surface for the water molecule. , 2008, The Journal of chemical physics.

[37]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[38]  A. S. Pine,et al.  Asymmetries and correlations in speed-dependent Dicke-narrowed line shapes of argon-broadened HF , 1999 .

[39]  May,et al.  Line-shape analysis of speed-dependent collisional width inhomogeneities in CO broadened by Xe, N2, and He. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Jonathan Tennyson,et al.  The Water Vapor Spectrum in the Region 8600-15 000 cm(-1): Experimental and Theoretical Studies for a New Spectral Line Database. , 2001, Journal of molecular spectroscopy.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  R. Ciuryło,et al.  Response of scanning Fabry-Pèrot interferometer to the speed dependent Voigt profile , 1995 .

[43]  J. Hodges,et al.  Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer , 2005 .

[44]  Robert A. Toth,et al.  Measurements of positions, strengths and self-broadened widths of H2O from 2900 to 8000 cm−1: line strength analysis of the 2nd triad bands , 2005 .

[45]  R. Blackmore A modified Boltzmann kinetic equation for line shape functions , 1987 .

[46]  G. Rusciano,et al.  Speed-dependent and correlation effects on the line shape of acetylene (8 pages) , 2005 .

[47]  J. Hodges,et al.  High-Precision Pressure Shifting Measurement Technique Using Frequency-Stabilized Cavity Ring-Down Spectroscopy , 2008 .

[48]  Robert A. Toth,et al.  Empirical Line Parameters of H216O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients , 2002 .

[49]  R. W. Nicholls,et al.  Relative band strengths for the AlO blue-green system , 1969 .

[50]  C. J. Tsao,et al.  Line-widths of pressure-broadened spectral lines , 1962 .

[51]  May,et al.  Line Mixing and Broadening in the Raman Q Branch of HD at 304.6 K. , 1998, Journal of molecular spectroscopy.

[52]  J. Drummond,et al.  Spectral line shape of the P(2) transition in CO-Ar: Uncorrelated ab initio calculation , 2002 .

[53]  Jonathan Tennyson,et al.  DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules , 2004, Comput. Phys. Commun..

[54]  J. Hartmann,et al.  Collisional parameters of H2O lines : Velocity effects on the line-shape , 2007 .

[55]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[56]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[57]  S. Neshyba,et al.  Fully complex implementation of the Robert–Bonamy formalism: Half widths and line shifts of H2O broadened by N2 , 1996 .

[58]  Jonathan Tennyson,et al.  Spectroscopically determined potential energy surfaces of the H216O, H217O, and H218O isotopologues of water , 2006 .