A 3D Empirical Model of Electron Density Based on CSES Radio Occultation Measurements

China Seismo‐Electromagnetic Satellite (CSES) was successfully launched in February 2018. About 280 thousand ionospheric radio occultation (RO) electron density profiles (EDP) have been accumulated till the end of 2020. The CSES is a Sun‐synchronous orbit satellite with descending and ascending nodes around 14:00 and 02:00 LT, respectively, at the height of 507 km. Thus, most of the RO EDP concentrate on these two local time bins. First, we constructed empirical NmF2, hmF2, and Hm models at two local time windows 14:00 and 02:00 LT, respectively. The three models describe that NmF2, hmF2, and Hm vary with solar activity, season, longitude, and latitude. Through the comparison with CSES observations, the NmF2, hmF2, and Hm models could reproduce the physical characteristics rather well. Then, according to Chapman profile function, a EDP model was reconstructed based on the NmF2, hmF2, and Hm models, named CSES_Ne‐Profile Model. To evaluate the model performance, we simulated the COSMIC‐2 observations by CSES_Ne‐Profile Model and international reference ionosphere (IRI) model respectively. The results show that CSES_Ne‐Profile Model precedes the IRI model. Additionally, our model captures the merging phenomenon of the two peaks of equatorial ionospheric anomaly, which is missed by IRI. Further, CSES_NePrf model is a useful tool to provide the quiet background for case studies and joint studies with other payloads onboard CSES.

[1]  Daniel Okoh,et al.  A global 3-D electron density reconstruction model based on radio occultation data and neural networks , 2021 .

[2]  H. Lühr,et al.  Intercalibration of the Plasma Density Measurements in Earth's Topside Ionosphere , 2021, Journal of Geophysical Research: Space Physics.

[3]  H. Le,et al.  A Global Empirical Model of Electron Density Profile in the F Region Ionosphere Basing on COSMIC Measurements , 2021, Space Weather.

[4]  H. Le,et al.  Response of the Ionosphere to Varying Solar Fluxes , 2021 .

[5]  Libo Liu,et al.  Modeling the global ionospheric electron densities based on the EOF decomposition of the ionospheric radio occultation observation , 2020 .

[6]  Y. Yang,et al.  The First Intense Geomagnetic Storm Event Recorded by the China Seismo‐Electromagnetic Satellite , 2020, Space Weather.

[7]  Xiuying Wang,et al.  Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites , 2019, Advances in Space Research.

[8]  Bodo W. Reinisch,et al.  A New Artificial Neural Network‐Based Global Three‐Dimensional Ionospheric Model (ANNIM‐3D) Using Long‐Term Ionospheric Observations: Preliminary Results , 2019, Journal of Geophysical Research: Space Physics.

[9]  H. Le,et al.  α‐Chapman Scale Height: Longitudinal Variation and Global Modeling , 2019, Journal of Geophysical Research: Space Physics.

[10]  Libo Liu,et al.  Transition of Interhemispheric Asymmetry of Equatorial Ionization Anomaly During Solstices , 2018, Journal of Geophysical Research: Space Physics.

[11]  Zhizhao Liu,et al.  Low‐Latitude Ionospheric Density Irregularities and Associated Scintillations Investigated by Combining COSMIC RO and Ground‐Based Global Positioning System Observations Over a Solar Active Period , 2018 .

[12]  Jian Lin,et al.  CSES GNSS ionospheric inversion technique, validation and error analysis , 2018 .

[13]  Xuemin Zhang,et al.  The state-of-the-art of the China Seismo-Electromagnetic Satellite mission , 2018 .

[14]  G. J. Bailey,et al.  Recent developments in the understanding of equatorial ionization anomaly: A review , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[15]  W. Wan,et al.  A numerical study of the interhemispheric asymmetry of the equatorial ionization anomaly in solstice at solar minimum , 2016 .

[16]  B. Tsurutani,et al.  An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA) , 2016 .

[17]  Yen-Hsyang Chu,et al.  A long-term study on the deletion criterion of questionable electron density profiles caused by ionospheric irregularities – COSMIC radio occultation technique , 2016 .

[18]  X. Dou,et al.  Double crests of peak height in the equatorial ionospheric F2 layer observed by COSMIC , 2016 .

[19]  H. Le,et al.  An empirical model of the topside plasma density around 600 km based on ROCSAT‐1 and Hinotori observations , 2015 .

[20]  W. Wan,et al.  An update global model of hmF2 from values estimated from ionosonde and COSMIC/FORMOSAT-3 radio occultation , 2014 .

[21]  S. Magdaleno,et al.  Global empirical models of the density peak height and of the equivalent scale height for quiet conditions , 2013 .

[22]  R. Leitinger,et al.  The Regional TEC Model Developed in Graz — A Progress Report , 1997, Acta Geodaetica et Geophysica Hungarica.

[23]  Chen Zhou,et al.  Preliminary investigation of real‐time mapping of foF2 in northern China based on oblique ionosonde data , 2013 .

[24]  Libo Liu,et al.  A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere , 2012 .

[25]  S. Solomon,et al.  Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data , 2012 .

[26]  Feng Ding,et al.  Modeling the global ionospheric total electron content with empirical orthogonal function analysis , 2012 .

[27]  Mohammed Mainul Hoque,et al.  A new global empirical NmF2 model for operational use in radio systems , 2011 .

[28]  Libo Liu,et al.  Further study on the solar activity variation of daytime NmF2 , 2010 .

[29]  H. Yeh,et al.  COSMIC/FORMOSAT‐3 observations of equatorial F region irregularities in the SAA longitude sector , 2010 .

[30]  Thomas J. Immel,et al.  Temporal modulations of the longitudinal structure in F2 peak height in the equatorial ionosphere as observed by COSMIC , 2009 .

[31]  D. Bilitza Evaluation of the IRI-2007 model options for the topside electron density , 2009 .

[32]  J. Liu,et al.  Empirical models of Total Electron Content based on functional fitting over Taiwan during geomagnetic quiet condition , 2009 .

[33]  Congliang Liu,et al.  A global model of the ionospheric F2 peak height based on EOF analysis , 2009 .

[34]  Sandro M. Radicella,et al.  The NeQuick model genesis, uses and evolution , 2009 .

[35]  Libo Liu,et al.  Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements , 2009 .

[36]  Libo Liu,et al.  Topside ionospheric scale heights retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements , 2008 .

[37]  Lintao Liu,et al.  Wavenumber‐4 patterns of the total electron content over the low latitude ionosphere , 2008 .

[38]  Biqiang Zhao,et al.  The dependence of plasma density in the topside ionosphere on the solar activity level , 2007 .

[39]  Libo Liu,et al.  An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements , 2007 .

[40]  Bodo W. Reinisch,et al.  Quiet-condition hmF2, NmF2, and B0 variations at Jicamarca and comparison with IRI-2001during solar maximum , 2006 .

[41]  Libo Liu,et al.  An EOF Based Empirical Model Of TEC Over Wuhan , 2005 .

[42]  Libo Liu,et al.  Variations of electron density based on long‐term incoherent scatter radar and ionosonde measurements over Millstone Hill , 2005 .

[43]  H. K. Hills,et al.  Topside Ionogram Scaler With True Height Algorithm (TOPIST): Automated processing of ISIS topside ionograms , 2004 .

[44]  Stefan Heise,et al.  A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere , 2003 .

[45]  S. Kawamura,et al.  Annual and semiannual variations of the midlatitude ionosphere under low solar activity , 2002 .

[46]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[47]  H. Rishbeth,et al.  Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion , 2000 .

[48]  T. Fuller‐Rowell,et al.  Annual and Semiannual Variations in the Ionospheric F2-layer. I. Modelling , 2022 .

[49]  H. Rishbeth,et al.  Semiannual and annual variations in the height of the ionospheric F2-peak , 2000 .

[50]  S. M. Radicella,et al.  The improved DGR analytical model of electron density height profile and total electron content in the ionosphere , 1995 .

[51]  R. B. Bent Bent ionospheric model (1972) , 1992 .

[52]  D. Bilitza,et al.  A global model for the height of the F2-peak using M3000 values from the CCIR numerical map , 1979 .

[53]  Rodney B. Bent,et al.  Documentation and Description of the Bent Ionospheric Model , 1973 .

[54]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.

[55]  X. Dou,et al.  Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data , 2012 .

[56]  Pencho Marinov,et al.  Topside sounder model of scale height and transition height characteristics of the ionosphere , 2007 .

[57]  S. Watanabe,et al.  An empirical model of electron density in low latitude at 600 km obtained by Hinotori satellite , 2006 .

[58]  Pencho Marinov,et al.  Model of topside ionosphere scale height based on topside sounder data , 2006 .

[59]  Xueqin Huang,et al.  Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements , 2004 .

[60]  Sandro M. Radicella,et al.  The evolution of the DGR approach to model electron density profiles , 2001 .

[61]  S. Fukao,et al.  Annual variations of the ionosphere: A review based on MU radar observations , 2000 .

[62]  G. J. Bailey,et al.  Modeling studies of equatorial plasma fountain and equatorial anomaly , 1996 .

[63]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .