A Self-stabilizing One-To-Many Node Disjoint Paths Routing Algorithm in Star Networks

The purpose of the paper is to present the first self-stabilizing algorithm for finding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} one-to-many node-disjoint paths in message passing model. Two paths in a network are said to be node disjoint if they do not share any nodes except for the endpoints. Our proposed algorithm works on n-dimensional star networks \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. Given a source node s and a set of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{d_1, d_2, ...,d_{n-1} \}$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} destination nodes in the n-dimensional star network, our algorithm constructs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} node-disjoints paths \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_1, P_2,...,P_{n-1}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_i$$\end{document} is a path from s to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i \le n-1$$\end{document}. Since the proposed solution is self-stabilizing [7], it does not require initialization and withstands transient faults. The stabilization time of our algorithm is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} rounds.

[1]  Yang Wang,et al.  Pre-configured multi-dimensional protection (p-MDP) structure against multi-failures in high-degree node based optical networks , 2013, 2013 8th International Conference on Communications and Networking in China (CHINACOM).

[2]  D. Frank Hsu,et al.  Short containers in Cayley graphs , 2009, Discret. Appl. Math..

[3]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[4]  Mehmet Hakan Karaata,et al.  A Stabilizing Algorithm for Finding Two Node-Disjoint Paths in Arbitrary Networks , 2017, Int. J. Found. Comput. Sci..

[5]  Mehmet Hakan Karaata,et al.  An adaptive stabilizing algorithm for finding all disjoint paths in anonymous mesh networks , 2009, Comput. Commun..

[6]  Shahram Latifi On the Fault-Diameter of the Star Graph , 1993, Inf. Process. Lett..

[7]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[8]  Cheng-Nan Lai,et al.  Two conditions for reducing the maximal length of node-disjoint paths in hypercubes , 2012, Theor. Comput. Sci..

[9]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[10]  Ozgur Sinanoglu,et al.  An Inherently Stabilizing Algorithm for Node-To-Node Routing over All Shortest Node-Disjoint Paths in Hypercube Networks , 2010, IEEE Transactions on Computers.

[11]  Cheng-Nan Lai,et al.  Optimal Construction of All Shortest Node-Disjoint Paths in Hypercubes with Applications , 2012, IEEE Transactions on Parallel and Distributed Systems.

[12]  Yuh-Dauh Lyuu,et al.  A graph-theoretical study of transmission delay and fault tolerance , 1994 .

[13]  Edsger W. Dijkstra,et al.  Self stabilization in spite of distributed control , 1974 .

[14]  Chia-Chun Hsu A Genetic Algorithm for Maximum Edge-disjoint Paths Problem and Its Extension to Routing and Wavelength Assignment Problem , 2013 .

[15]  Ke Qiu,et al.  An Efficient Disjoint Shortest Paths Routing Algorithm for the Hypercube , 2008, 2008 14th IEEE International Conference on Parallel and Distributed Systems.

[16]  Shahram Latifi,et al.  Node-to-Set Vertex Disjoint Paths in Hypercube Networks , 1998 .

[17]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[18]  Ivan Hal Sudborough,et al.  Three disjoint path paradigms in star networks , 1991, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing.

[19]  R. J. D'Souza,et al.  Digital Signature-Based Secure Node Disjoint Multipath Routing Protocol for Wireless Sensor Networks , 2012, IEEE Sensors Journal.

[20]  Shietung Peng,et al.  Node-to-Set and Set-to-Set Cluster Fault Tolerant Routing in Hypercubes , 1998, Parallel Comput..

[21]  Eddie Cheng,et al.  On Disjoint Shortest Paths Routing on the Hypercube , 2009, COCOA.

[22]  Mehmet Hakan Karaata,et al.  Brief Announcement: A Stabilizing Algorithm for Finding Two Disjoint Paths in Arbitrary Networks , 2009, SSS.

[23]  Michael O. Rabin,et al.  Efficient dispersal of information for security, load balancing, and fault tolerance , 1989, JACM.

[24]  Chi-Chang Chen,et al.  Combinatorial and algebraic methods in star and de bruijn networks , 1995 .

[25]  Pradip K. Srimani,et al.  Topological properties of star graphs , 1993 .

[26]  D.Frank Hsu,et al.  On Container Width and Length in Graphs, Groups,and Networks--Dedicated to Professor Paul Erdös on the occasion of his 80th birthday-- , 1994 .

[27]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[28]  Chi-Chang Chen,et al.  Nearly Optimal One-to-Many Parallel Routing in Star Networks , 1997, IEEE Trans. Parallel Distributed Syst..