Novel Nueral Network Feature Selection Procedure by Generalization Maximization with Application to Automatic Robot Guidance

[1]  Simone G. O. Fiori,et al.  Blind signal processing by the adaptive activation function neurons , 2000, Neural Networks.

[2]  Yves Grandvalet,et al.  Comments on "Noise injection into inputs in back propagation learning" , 1995, IEEE Trans. Syst. Man Cybern..

[3]  Joydeep Ghosh,et al.  Mutual information feature extractors for neural classifiers , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[4]  Yves Grandvalet,et al.  Noise injection for inputs relevance determination , 1997 .

[5]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[6]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[7]  R. Spence,et al.  Tellegen's theorem and electrical networks , 1970 .

[8]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[9]  P. Langley Selection of Relevant Features in Machine Learning , 1994 .

[10]  Kenji Suzuki,et al.  A Simple Neural Network Pruning Algorithm with Application to Filter Synthesis , 2001, Neural Processing Letters.

[11]  H. Lappalainen,et al.  Using an MDL-based cost function with neural networks , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[12]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[13]  Esther Levin,et al.  A statistical approach to learning and generalization in layered neural networks , 1989, Proc. IEEE.

[14]  Matthew Turk,et al.  VITS-A Vision System for Autonomous Land Vehicle Navigation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  D. Bertrand,et al.  Feature selection by a genetic algorithm. Application to seed discrimination by artificial vision , 1998 .

[16]  Huan Liu,et al.  Some issues on scalable feature selection , 1998 .

[17]  Hans Henrik Thodberg,et al.  Improving Generalization of Neural Networks Through Pruning , 1991, Int. J. Neural Syst..

[18]  Simone G. O. Fiori,et al.  Hybrid independent component analysis by adaptive LUT activation function neurons , 2002, Neural Networks.

[19]  Paul S. Bradley,et al.  Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..

[20]  Simone G. O. Fiori,et al.  Blind separation of circularly distributed sources by neural extended APEX algorithm , 2000, Neurocomputing.

[21]  Opper,et al.  Generalization ability of perceptrons with continuous outputs. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  David W. Payton,et al.  Plan guided reaction , 1990, IEEE Trans. Syst. Man Cybern..

[23]  D. Mackay,et al.  A Practical Bayesian Framework for Backprop Networks , 1991 .

[24]  Simone G. O. Fiori,et al.  Image compression using principal component neural networks , 2001, Image Vis. Comput..

[25]  S. Fiori,et al.  A general class of /spl psi/-APEX PCA neural algorithms , 2000 .

[26]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[27]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[28]  Hans Henrik Thodberg,et al.  A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.

[29]  Pietro Burrascano A pruning technique maximizing generalization , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[30]  Lloyd A. Smith,et al.  Practical feature subset selection for machine learning , 1998 .

[31]  Zoubin Ghahramani,et al.  Propagation Algorithms for Variational Bayesian Learning , 2000, NIPS.

[32]  Michael C. Mozer,et al.  Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment , 1988, NIPS.

[33]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[34]  J. Knowles,et al.  Coefficient Accuracy and Digital Filter Response , 1968 .

[35]  Ernst D. Dickmanns,et al.  Recursive 3-D Road and Relative Ego-State Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[37]  Karl Kluge YARF: An Open-Ended Framework for Robot Road Following , 1993 .

[38]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[39]  Shun-ichi Amari,et al.  Statistical Theory of Learning Curves under Entropic Loss Criterion , 1993, Neural Computation.

[40]  Huan Liu,et al.  Neural-network feature selector , 1997, IEEE Trans. Neural Networks.

[41]  Bagrat R. Amirikian,et al.  What size network is good for generalization of a specific task of interest? , 1994, Neural Networks.

[42]  Ehud D. Karnin,et al.  A simple procedure for pruning back-propagation trained neural networks , 1990, IEEE Trans. Neural Networks.

[43]  M. Meng,et al.  Mobile robot navigation using neural networks and nonmetrical environmental models , 1993, IEEE Control Systems.

[44]  J. Crisman Color vision for the detection of unstructured road and intersections , 1990 .