On the approximation of Min Split-coloring and Min Cocoloring

We consider two problems, namely Min Split-coloring and Min Cocoloring, that generalize the classical Min Coloring problem by using not only stable sets but also cliques to cover all the vertices of a given graph. We prove the NP-hardness of some cases. We derive approximation results for Min Split-coloring and Min Cocoloring in line graphs, comparability graphs and general graphs. This provides to our knowledge the first approximation results for Min Split-coloring since it was defined only very recently [8, 9, 13]. Also, we provide some results on the approximability of Min Cocoloring and comparisons with Min Split-coloring and Min Coloring.

[1]  Marc Demange,et al.  On an Approximation Measure Founded on the Links Between Optimization and Polynomial Approximation Theory , 1996, Theor. Comput. Sci..

[2]  Rong-chii Duh,et al.  Approximation of k-set cover by semi-local optimization , 1997, STOC '97.

[3]  Fedor V. Fomin,et al.  Approximating Minimum Cocolourings , 2001, FCT.

[4]  Chi Wang,et al.  Partitioning Permutations into Increasing and Decreasing Subsequences , 1996, J. Comb. Theory, Ser. A.

[5]  Dominique de Werra,et al.  Partitioning cographs into cliques and stable sets , 2005, Discret. Optim..

[6]  Vangelis Th. Paschos,et al.  Master-Slave Strategy and Polynomial Approximation , 2000, Comput. Optim. Appl..

[7]  Sulamita Klein,et al.  Partitioning chordal graphs into independent sets and cliques , 2004, Discret. Appl. Math..

[8]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[9]  Refael Hassin,et al.  Maximizing the Number of Unused Colors in the Vertex Coloring Problem , 1994, Inf. Process. Lett..

[10]  Andreas Brandstädt,et al.  The Complexity of some Problems Related to Graph 3-colorability , 1998, Discret. Appl. Math..

[11]  Vangelis Th. Paschos,et al.  Poly-APX- and PTAS-Completeness in Standard and Differential Approximation , 2004, ISAAC.

[12]  Klaus W. Wagner,et al.  Monotonic Coverings of Finite Sets , 1984, J. Inf. Process. Cybern..

[13]  Sulamita Klein,et al.  List Partitions , 2003, SIAM J. Discret. Math..

[14]  Samir Khuller,et al.  z-Approximations , 2001, J. Algorithms.

[15]  Alexander Schrijver Bipartite edge-colouring in O( m) time1 , 1999 .

[16]  Dominique de Werra,et al.  (p, K)-coloring Problems in Line Graphs , 2005, Electron. Notes Discret. Math..

[17]  Dominique de Werra,et al.  On line perfect graphs , 1978, Math. Program..

[18]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[19]  Fedor V. Fomin,et al.  Approximating minimum cocolorings , 2002, Inf. Process. Lett..

[20]  Dominique de Werra,et al.  On Split-Coloring Problems , 2005, J. Comb. Optim..

[21]  Eitan Zemel Measuring the Quality of Approximate Solutions to Zero-One Programming Problems , 1981, Math. Oper. Res..

[22]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[23]  Fan Chung Graham,et al.  A survey of bounds for classical Ramsey numbers , 1983, J. Graph Theory.

[24]  Fanica Gavril,et al.  Algorithms for maximum k-colorings and k-coverings of transitive graphs , 1987, Networks.

[25]  Vangelis Th. Paschos,et al.  Differential Approximation Algorithms for Some Combinatorial Optimization Problems , 1998, Theor. Comput. Sci..

[26]  Jayadev Misra,et al.  A Constructive Proof of Vizing's Theorem , 1992, Inf. Process. Lett..

[27]  Dieter Kratsch,et al.  On Cocolourings and Cochromatic Numbers of Graphs , 1994, Discret. Appl. Math..

[28]  Alexander Schrijver Bipartite Edge Coloring in O(Delta m) Time , 1998, SIAM J. Comput..

[29]  András Frank,et al.  On chain and antichain families of a partially ordered set , 1980, J. Comb. Theory, Ser. B.