Concerted quantum effects of electronic and nuclear fluxes in molecules

Common myth suggests synchronicity and unidirectionality of nuclear and electronic fluxes. Accurate quantum dynamics simulations of the vibrating model system, aligned H2+, confirm this rule, but with exceptional opposite behaviours during short periods in the attosecond time domain. The ratio of electronic versus nuclear fluxes increases systematically, from small to large amplitude nuclear motions. Visualization of the electronic and nuclear densities and flux densities reveals that this is due to broader dispersion of electronic wavepackets compared to nuclear ones. The accurate results validate an efficient general method for quantum calculations of the fluxes in terms of densities, not flux densities.

[1]  Y. Shigeta,et al.  Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for Mg-porphyrin. , 2006, Journal of the American Chemical Society.

[2]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[3]  P. Corkum,et al.  Chirped attosecond photoelectron spectroscopy. , 2006, Physical review letters.

[4]  A. Zewail,et al.  Ultrafast electron diffraction reveals dark structures of the biological chromophore indole. , 2008, Angewandte Chemie.

[5]  William H. Miller,et al.  Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants , 1974 .

[6]  Eric V. Anslyn,et al.  Modern Physical Organic Chemistry , 2005 .

[7]  J. Manz,et al.  Spinning a pseudorotating molecular top by means of a circularly polarized infrared laser pulse: Quantum simulations for 114CdH2 , 2008 .

[8]  K. Takatsuka,et al.  Electron flux in molecules induced by nuclear motion , 2009 .

[9]  L. Serrano-Andrés,et al.  Nonadiabatic orientation, toroidal current, and induced magnetic field in BeO molecules. , 2008, The Journal of chemical physics.

[10]  A. Bandrauk,et al.  Effect of nuclear motion on molecular high-order harmonics and on generation of attosecond pulses in intense laser pulses. , 2008, Physical review letters.

[11]  Paul De Mayo,et al.  Rearrangements in ground and excited states , 1980 .

[12]  T. Baumert,et al.  Photoelectron angular distributions from strong-field coherent electronic excitation , 2009 .

[13]  Joseph J. Gajewski,et al.  Hydrocarbon thermal isomerizations , 1981 .

[14]  Henrik Stapelfeldt,et al.  Colloquium: Aligning molecules with strong laser pulses , 2003 .

[15]  A. Bandrauk,et al.  Observing electron motion in molecules , 2006 .

[16]  A. Czasch,et al.  Single Photon-Induced Symmetry Breaking of H2 Dissociation , 2007, Science.

[17]  William H. Miller,et al.  Beyond transition-state theory: A rigorous quantum theory of chemical reaction rates , 1993 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  H. Kono,et al.  Theoretical investigations of the electronic and nuclear dynamics of molecules in intense laser fields : Quantum mechanical wave packet approaches , 2006 .

[20]  Thomas H. Lowry,et al.  Mechanism and Theory in Organic Chemistry , 1976 .

[21]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[22]  G. Paramonov Ionization and dissociation of simple molecular ions in intense infrared laser fields: Quantum dynamical simulations for three-dimensional models of HD+ and H2+ , 2005 .

[23]  Ralph G. Wilkins,et al.  Kinetics and mechanism of reactions of transition metal complexes , 1991 .

[24]  K. Vollhardt,et al.  Organic Chemistry: Structure and Function , 1987 .

[25]  Hirohiko Kono,et al.  Quantum optimal control of electron ring currents in chiral aromatic molecules. , 2007, The Journal of chemical physics.

[26]  R. Kosloff,et al.  Large amplitude ground state vibrational coherence induced by impulsive absorption in CsI. A computer simulation , 1989 .

[27]  William H. Miller,et al.  “Direct” and “Correct” Calculation of Canonical and Microcanonical Rate Constants for Chemical Reactions , 1998 .

[28]  L. Nafie Adiabatic molecular properties beyond the Born–Oppenheimer approximation. Complete adiabatic wave functions and vibrationally induced electronic current density , 1983 .

[29]  A. Rudenko,et al.  Quantum-phase resolved mapping of ground-state vibrational D2 wave packets via selective depletion in intense laser pulses. , 2006, Physical review letters.

[30]  R. de Vivie-Riedle,et al.  Electron dynamics in molecules: a new combination of nuclear quantum dynamics and electronic structure theory , 2008 .

[31]  L. Cederbaum,et al.  Born-Oppenheimer approximation and beyond for time-dependent electronic processes. , 2008, The Journal of chemical physics.

[32]  A. Bandrauk,et al.  Attosecond localization of electrons in molecules , 2004 .

[33]  W. Miller,et al.  Quantum mechanical calculations of the rate constant for the H2+OH→H+H2O reaction: Full‐dimensional results and comparison to reduced dimensionality models , 1994 .

[34]  Hans-Dieter Meyer,et al.  Multidimensional quantum dynamics : MCTDH theory and applications , 2009 .

[35]  R. Jordan Reaction Mechanisms of Inorganic and Organometallic Systems , 1991 .

[36]  U. Manthe,et al.  First-Principles Theory for the H + CH4 → H2 + CH3 Reaction , 2004, Science.

[37]  Albert Stolow,et al.  Time-Resolved Dynamics in N2O4 Probed Using High Harmonic Generation , 2008, Science.

[38]  J. Manz,et al.  Periodic electron circulation induced by circularly polarized laser pulses: quantum model simulations for Mg porphyrin. , 2006, Angewandte Chemie.

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[41]  Yngve Öhrn,et al.  Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems , 1994 .

[42]  Lorenz S. Cederbaum,et al.  Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics , 2008 .

[43]  P. Corkum,et al.  Attosecond photoionization of a coherent superposition of bound and dissociative molecular states: effect of nuclear motion , 2009 .

[44]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[45]  J. Delos Theory of electronic transitions in slow atomic collisions , 1981 .

[46]  A. Verhoef,et al.  Control of Electron Localization in Molecular Dissociation , 2006, Science.

[47]  Jerry March,et al.  Advanced Organic Chemistry: Reactions, Mechanisms, and Structure , 1977 .