Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.

The cerebral cortex and thalamus constitute a unified oscillatory machine displaying different spontaneous rhythms that are dependent on the behavioral state of vigilance. In vivo multi-site recordings from a variety of neocortical areas and related thalamic nuclei in cat, including dual simultaneous intracellular recordings, demonstrate that corticofugal volleys are effective in synchronizing fast (20-50 Hz) and low-frequency (< 15 Hz) oscillations in thalamocortical networks, characterizing activated and de-afferented states. (i) Fast spontaneous oscillations depend on the depolarization of thalamic and cortical cells and appear in a sustained manner during waking and REM sleep. Corticothalamic neurons, discharging high-frequency (400 Hz) spike-bursts at 30-40 Hz, are good candidates to synchronize fast oscillations in reentrant thalamocortical loops. Weakly synchronized, fast spontaneous oscillations may be reset and become robustly coherent after relevant sensory stimuli in waking or internal signals during the dreaming state. (ii) During quiescent sleep, the long-range synchronization of brain electrical activity results from synchronous hyperpolarizations in forebrain neurons. The corticothalamic inputs during the depolarizing component of the slow oscillation (< 1 Hz) are effective in grouping the thalamic-generated sleep rhythms (spindles at 7-14 Hz and delta at 1-4 Hz) into complex wave-sequences. These inputs also control the shape of spindles, and favor the long-range synchronization and nearly simultaneous appearance of spindles. (iii) The cortical control of thalamic activity is also demonstrated in spike-wave-seizures developing from sleep patterns. More than half of thalamocortical neurons are silent during spike-wave seizures, being tonically hyperpolarized, and display IPSPs (closely related to the paroxysmal depolarizing shifts of cortical cells) that are determined by the pattern of activities in thalamic reticular cells. All these data congruently show the power of cortical control upon thalamic oscillators.

[1]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[2]  R. Morison,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1945 .

[3]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[4]  F. Bremer Cerebral and cerebellar potentials. , 1958, Physiological reviews.

[5]  F. Bremer,et al.  Facilitation Et Inhibition Des Potentiels Évoqués Corticaux Dans L'éveil Cérébral , 1959 .

[6]  P. Dell,et al.  Facilitation réticulaire des mécanismes visuels corticaux , 1960 .

[7]  M. Steriade,et al.  UNSPECIFIC SYSTEMS OF INHIBITION AND FACILITATION OF POTENTIALS EVOKED BY INTERMITTENT LIGHT , 1960 .

[8]  O D Creutzfeldt,et al.  Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. , 1966, Electroencephalography and clinical neurophysiology.

[9]  M. Steriade The flash-evoked afterdischarge. , 1968, Brain research.

[10]  F. H. Lopes da Silva,et al.  Dynamic characteristics of visual evoked potentials in the dog. II. Beta frequency selectivity in evoked potentials and background activity. , 1970, Electroencephalography and clinical neurophysiology.

[11]  M. Steriade,et al.  Cortically elicited activities in thalamic reticularis neurons. , 1972, Brain research.

[12]  C. Sotelo,et al.  Ultrastructural features of the isolated suprasylvian gyrus in the cat , 1974, The Journal of comparative neurology.

[13]  M Steriade,et al.  Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. , 1974, Electroencephalography and clinical neurophysiology.

[14]  R. W. Guillery,et al.  Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique , 1977, Brain Research.

[15]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[16]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[17]  R A Reale,et al.  Ipsilateral corticocortical projections related to binaural columns in cat primary auditory cortex , 1981, The Journal of comparative neurology.

[18]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[19]  M Steriade,et al.  Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase and fluorescent tracers , 1984, The Journal of comparative neurology.

[20]  M. Deschenes,et al.  The thalamus as a neuronal oscillator , 1984, Brain Research Reviews.

[21]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[22]  Mircea Steriade,et al.  Dendrodendritic synapses in the cat reticularis thalami nucleus: a structural basis for thalamic spindle synchronization , 1985, Brain Research.

[23]  E. G. Jones,et al.  The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  G Oakson,et al.  Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. , 1986, The Journal of physiology.

[25]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  H. Jahnsen,et al.  Electrophysiological characteristics of neurones in the guinea‐pig deep cerebellar nuclei in vitro. , 1986, The Journal of physiology.

[27]  S. Levay,et al.  Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat , 1986, The Journal of comparative neurology.

[28]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[29]  C. Avendaño,et al.  Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat , 1988, The Journal of comparative neurology.

[30]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[31]  M. Steriade Intrathalamic and brainstem-thalamic networks involved in resting and alert states , 1988 .

[32]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.

[33]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[34]  T. Bullock,et al.  Lateral coherence of the electrocorticogram: a new measure of brain synchrony. , 1989, Electroencephalography and clinical neurophysiology.

[35]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[36]  Martin Deschênes,et al.  Electrophysiology and Pharmacology of the Corticothalamic Input to Lateral Thalamic Nuclei: an Intracellular Study in the Cat , 1990, The European journal of neuroscience.

[37]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[38]  E. G. Jones,et al.  Thalamic oscillations and signaling , 1990 .

[39]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[40]  Nobuo Kato,et al.  Cortico-thalamo-cortical projection between visual cortices , 1990, Brain Research.

[41]  George K. Kostopoulos,et al.  Thalamocortical Relationships in Generalized Epilepsy with Bilaterally Synchronous Spike-and-Wave Discharge , 1990 .

[42]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[43]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[44]  M. Steriade,et al.  Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  D. Paré,et al.  Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[47]  I. Soltesz,et al.  Two inward currents and the transformation of low‐frequency oscillations of rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[48]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Steriade Alertness, Quiet Sleep, Dreaming , 1991 .

[50]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[51]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[53]  D. Prince,et al.  A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  M. Deschenes,et al.  The origin of rhythmic fast subthreshold depolarizations in thalamic relay cells of rats under urethane anaesthesia , 1992, Brain Research.

[55]  M. Steriade,et al.  Electrophysiology of a slow (0.5‐4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. , 1992, The Journal of physiology.

[56]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[57]  Estrella Rausell,et al.  Area 3a in the cat II. Projections to the motor cortex and their relations to other corticocortical connections , 1992, The Journal of comparative neurology.

[58]  M. Steriade,et al.  Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons , 1992, Neuroscience.

[59]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Deschenes,et al.  Voltage-dependent 40-Hz * oscillations in rat reticular thalamic neurons in vivo , 1992, Neuroscience.

[61]  U. Eysel,et al.  Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition , 1993, The Journal of comparative neurology.

[62]  D Contreras,et al.  Electrophysiological properties of cat reticular thalamic neurones in vivo. , 1993, The Journal of physiology.

[63]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Mircea Steriade,et al.  Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems , 1993, Current Opinion in Neurobiology.

[65]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[68]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[69]  D. Contreras,et al.  Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (≈40 HZ) spike-bursts at ≈1000 HZ during waking and rapid eye movement sleep , 1993, Neuroscience.

[70]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  M Steriade,et al.  Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. , 1993, Journal of neurophysiology.

[73]  T. Sejnowski,et al.  A model of spindle rhythmicity in the isolated thalamic reticular nucleus. , 1994, Journal of neurophysiology.

[74]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[75]  J. Desmedt,et al.  Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception , 1994, Neuroscience Letters.

[76]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  M Steriade,et al.  Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. , 1994, Journal of neurophysiology.

[78]  J. Rinzel,et al.  Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. , 1994, Journal of neurophysiology.

[79]  T. Sejnowski,et al.  Modeling the control of reticular thalamic oscillations by neuromodulators. , 1994, Neuroreport.

[80]  D. Contreras,et al.  Synchronized sleep oscillations and their paroxysmal developments , 1994, Trends in Neurosciences.

[81]  J. Tepper,et al.  Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: In vivo electrophysiology , 1994, Neuroscience.

[82]  Marc Joliot,et al.  Content and context in temporal thalamocortical binding , 1994 .

[83]  Y. Amitai,et al.  Membrane potential oscillations underlying firing patterns in neocortical neurons , 1994, Neuroscience.

[84]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  D. McCormick,et al.  Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. , 1995, Journal of neurophysiology.

[86]  Idan Segev,et al.  Subthreshold oscillations and resonant frequency in guinea‐pig cortical neurons: physiology and modelling. , 1995, The Journal of physiology.

[87]  D Contreras,et al.  Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  M. Steriade,et al.  Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation. , 1995, Journal of neurophysiology.

[89]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[90]  B. Gähwiler,et al.  Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum In vitro , 1995, Neuroscience.

[91]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[92]  D. McCormick,et al.  Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. , 1995, The Journal of physiology.

[93]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[94]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  D. McCormick,et al.  Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. , 1995, The Journal of physiology.

[96]  M. Steriade,et al.  Progressive cortical synchronization of ponto-geniculo-occipital potentials during rapid eye movement sleep , 1996, Neuroscience.

[97]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[98]  D. Contreras,et al.  Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. , 1996, The Journal of physiology.

[99]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[101]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[103]  D. Plenz,et al.  Generation of high-frequency oscillations in local circuits of rat somatosensory cortex cultures. , 1996, Journal of neurophysiology.

[104]  D. Contreras,et al.  Synchronization of low-frequency rhythms in corticothalamic networks , 1996, Neuroscience.

[105]  P. Churchland,et al.  The Mind-Brain Continuum: Sensory Processes , 1996 .

[106]  D. McCormick,et al.  What Stops Synchronized Thalamocortical Oscillations? , 1996, Neuron.

[107]  D. Barth,et al.  Thalamic modulation of high-frequency oscillating potentials in auditory cortex , 1996, Nature.

[108]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[109]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[110]  E. Fetz,et al.  Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. , 1996, Journal of neurophysiology.

[111]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[112]  E. Fetz,et al.  Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. , 1996, Journal of neurophysiology.

[113]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  M Steriade,et al.  Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. , 1996, Journal of neurophysiology.

[115]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[116]  J. Mitrofanis,et al.  Organisation of the reticular thalamic projection to the intralaminar and midline nuclei in rats , 1997, The Journal of comparative neurology.

[117]  D Contreras,et al.  Spindle oscillations during cortical spreading depression in naturally sleeping cats. , 1997, Neuroscience.

[118]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[119]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[120]  M. Steriade The Mind-Brain Continuum edited by Rodolfo Llinás and Patricia S. Churchland, MIT Press, 1996. $50.00 (xi + 315 pages) ISBN 0 262 12198 0 , 1997, Trends in Neurosciences.

[121]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[122]  D. Coulter,et al.  Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro. , 1997, Journal of neurophysiology.

[123]  R. Llinás,et al.  Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[124]  M. Steriade,et al.  Cellular substrates and laminar profile of sleep K-complex , 1997, Neuroscience.

[125]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[126]  M Steriade,et al.  Short-Term Plasticity during Intrathalamic Augmenting Responses in Decorticated Cats , 1997, The Journal of Neuroscience.

[127]  Florin Amzica,et al.  The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves , 1997, Neurology.

[128]  M. Steriade,et al.  Instrumental conditioning of fast (20- to 50-Hz) oscillations in corticothalamic networks. , 1997, Proceedings of the National Academy of Sciences of the United States of America.