Probabilistic characterisation of the length effect for parallel to the grain tensile strength of Central European spruce

Abstract The paper presents a probabilistic model characterising tensile strength parallel to grain of Central European spruce boards without longitudinal joints. The effect of length of members on strength is considered explicitly by considering a member by a serial arrangement of weak sections triggered by major knots of knot clusters. In order to demonstrate the applicability of the proposed model the model parameters are calibrated based on the analysis of three samples of spruce of Switzerland (Mischler-Schrepfer, 2000 [25] ) and Austria (Schickhofer and Augustin, 2001 [28] ), in total 460 boards tested in full size. This model might serve as basis for studies concerning the length effect of boards relevant for solid timber structures as well as basis for judging the length effect of finger jointed construction timber and glulam, and as starting point for modelling the process of proof loading.

[1]  Bo Källsner,et al.  Experimental verification of a weak zone model for timber in bending , 1997 .

[2]  Gerhard Schickhofer,et al.  Stochastic System Actions and Effects in Engineered Timber Products and Structures , 2012 .

[3]  J. D. Barrett Effect of Size on Tension Perpendicular-To-Grain Strength of Douglas-Fir , 2007 .

[4]  F. Colling Einfluß des Volumens und der Spannungsverteilung auf die Festigkeit eines Rechteckträgers , 1986, Holz als Roh- und Werkstoff.

[5]  Span-Dependent Distributions of the Bending Strength of Spruce Timber , 2005 .

[6]  D. A. Bender,et al.  Simulating Correlated Lumber Properties Using a Modified Multivariate Normal Approach , 1988 .

[7]  F. Lam,et al.  Variation of tensile strength along the length of lumber , 2004, Wood Science and Technology.

[8]  Frank Lam,et al.  Size Effects in Visually Graded Softwood Structural Lumber , 1995 .

[9]  Donald A. Bender,et al.  Stochastic Model for Localized Tensile Strength and Modulus of Elasticity in Lumber , 1991 .

[10]  G. Grimmett,et al.  Probability and random processes , 2002 .

[11]  J. Williamson Statistical models for the effect of length on the strength of lumber , 1992 .

[12]  Alfred Teischinger,et al.  Knots in trees: strain distribution in a naturally optimised structure , 2010, Wood Science and Technology.

[13]  Jochen Köhler,et al.  Reliability of Timber Structures , 2007 .

[14]  F. Lam,et al.  Variation of tensile strength along the length of lumber , 1991, Wood Science and Technology.

[15]  F. Colling,et al.  Die Ästigkeit des in den Leimbaubetrieben verwendeten Schmittholzes , 2007, Holz als Roh- und Werkstoff.

[16]  H. J. Larsen,et al.  DS/ENV 1995-1-1 NAD National Application Document for Eurocode 5: Design of Timber Structures, Part 1-1: General Rules and Rules for Buildings , 1994 .

[17]  W. Weibull A statistical theory of the strength of materials , 1939 .

[18]  D. Bender,et al.  A method for simulating mulitple correlated lumber properties , 1989 .

[19]  Andrew H. Buchanan,et al.  Size effects in timber explained by a modified weakest link theory , 1986 .

[20]  Julia K. Denzler Modellierung des Größeneffektes bei biegebeanspruchtem Fichtenschnittholz , 2007 .