A Posteriori Error Estimates of Stabilization of Low-Order Mixed Finite Elements for Incompressible Flow

In this paper, we derive a posteriori error estimates for the stabilization of low-order mixed finite element methods for the Stokes equations. By defining different projection estimators, we prove that, up to higher order perturbation terms, the estimators yield global upper and lower bounds on the error of stabilized finite element methods. In numerical tests, each error estimator is shown to be equivalent to the discretization error. It is also shown that the adaptive strategy based on both projection estimators is efficient to detect local singularities in the flow problems.

[1]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[2]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[3]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[4]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[5]  DAVID KAY,et al.  A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[8]  Yinnian He,et al.  A stabilized finite element method based on two local Gauss integrations for the Stokes equations , 2008 .

[9]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[10]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[11]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[12]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[13]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[16]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[17]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[18]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[21]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.