Periodic stopping games

AbstractStopping games (without simultaneous stopping) are sequential games in which at every stage one of the players is chosen, who decides whether to continue the interaction or stop it, whereby a terminal payoff vector is obtained. Periodic stopping games are stopping games in which both of the processes that define it, the payoff process as well as the process by which players are chosen, are periodic and do not depend on the past choices. We prove that every periodic stopping game without simultaneous stopping, has either periodic subgame perfect ϵ-equilibrium or a subgame perfect 0-equilibrium in pure strategies.