Garch forecasting performance under different distribution assumptions

This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  P. Hansen,et al.  An Unbiased Measure of Realized Variance , 2004 .

[2]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[3]  T. Bollerslev,et al.  Analytical Evaluation of Volatility Forecasts , 2002 .

[4]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[5]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[6]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[7]  Anil K. Bera,et al.  A test for normality of observations and regression residuals , 1987 .

[8]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[9]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[10]  Kurt Brännäs,et al.  An alternative conditional asymmetry specification for stock returns , 2003 .

[11]  P. Franses,et al.  Additive outliers, GARCH and forecasting volatility , 1999 .

[12]  David G. McMillan,et al.  Daily volatility forecasts: reassessing the performance of GARCH models , 2004 .

[13]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[14]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[15]  Robert C. Spicer,et al.  Author's biography , 1993 .

[16]  Jose A. Lopez Evaluating the Predictive Accuracy of Volatility Models , 2001 .

[17]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[18]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[19]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[20]  P. Manimaran,et al.  Modelling Financial Time Series , 2006 .

[21]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[22]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[23]  C. Granger,et al.  Forecasting Volatility in Financial Markets: A Review , 2003 .

[24]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[25]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .

[26]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[27]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[28]  S. Prowse,et al.  The Private Equity Market: An Overveiw , 1997 .

[29]  Campbell R. Harvey,et al.  Current Version : April 6 , 1999 Autoregressive Conditional Skewness , 1999 .

[30]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .