Sample Path Large Deviations for Stochastic Evolutionary Game Dynamics

We study a model of stochastic evolutionary game dynamics in which the probabilities that agents choose suboptimal actions are dependent on payoff consequences. We prove a sample path large deviation principle, characterizing the rate of decay of the probability that the sample path of the evolutionary process lies in a prespecified set as the population size approaches infinity. We use these results to describe excursion rates and stationary distribution asymptotics in settings where the mean dynamic admits a globally attracting state, and we compute these rates explicitly for the case of logit choice in potential games.

[1]  J. Weibull,et al.  Nash Equilibrium and Evolution by Imitation , 1994 .

[2]  M. Benaïm,et al.  Deterministic Approximation of Stochastic Evolution in Games , 2003 .

[3]  L. Shapley,et al.  Potential Games , 1994 .

[4]  Mathias Staudigl,et al.  Stochastic stability in asymmetric binary choice coordination games , 2012, Games Econ. Behav..

[5]  Ken Binmore,et al.  Muddling Through: Noisy Equilibrium Selection☆ , 1997 .

[6]  R. Rajendiran,et al.  Topological Spaces , 2019, A Physicist's Introduction to Algebraic Structures.

[7]  P. Dupuis Large Deviations Analysis of Some Recursive Algorithms with State Dependent Noise , 1988 .

[8]  William H. Sandholm,et al.  Simple formulas for stationary distributions and stochastically stable states , 2007, Games Econ. Behav..

[9]  R. Rob,et al.  Bandwagon Effects and Long Run Technology Choice , 2010 .

[10]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[11]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[12]  H. Young,et al.  The Evolution of Conventions , 1993 .

[13]  D. M. V. Hesteren Evolutionary Game Theory , 2017 .

[14]  C. Léonard Large deviations for long range interacting particle systems with jumps , 1995 .

[15]  H. Young Individual Strategy and Social Structure , 2020 .

[16]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[17]  Michihiro Kandori,et al.  Evolution of Equilibria in the Long Run: A General Theory and Applications , 1995 .

[18]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[19]  L. Samuelson,et al.  Musical Chairs: Modeling Noisy Evolution , 1995 .

[20]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[21]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[22]  T. Kurtz Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.

[23]  William H. Sandholm,et al.  Population Games And Evolutionary Dynamics , 2010, Economic learning and social evolution.

[24]  Vivek S. Borkar,et al.  Asymptotics of the invariant measure in mean field models with jumps , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  W. Sandholm,et al.  Large deviations and stochastic stability in the small noise double limit , 2016 .

[26]  L. Blume,et al.  POPULATION GAMES , 1995 .

[27]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[28]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[29]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[30]  William H. Sandholm,et al.  Population Games and Deterministic Evolutionary Dynamics , 2015 .

[31]  K. Schlag Why Imitate, and If So, How?, : A Boundedly Rational Approach to Multi-armed Bandits , 1998 .

[32]  D. Helbing A Mathematical Model for Behavioral Changes by Pair Interactions , 1998, cond-mat/9805102.

[33]  I. Gilboa,et al.  Social Stability and Equilibrium , 1991 .

[34]  R. Azencott,et al.  Mélanges d'équations différentielles et grands écarts à la loi des grands nombres , 1977 .

[35]  William H. Sandholm,et al.  Stochastic Approximations with Constant Step Size and Differential Inclusions , 2013, SIAM J. Control. Optim..

[36]  M. Benaïm Recursive algorithms, urn processes and chaining number of chain recurrent sets , 1998, Ergodic Theory and Dynamical Systems.

[37]  William H. Sandholm,et al.  Potential Games with Continuous Player Sets , 2001, J. Econ. Theory.

[38]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[39]  L. Blume The Statistical Mechanics of Strategic Interaction , 1993 .

[40]  Josef Hofbauer,et al.  Evolution in games with randomly disturbed payoffs , 2007, J. Econ. Theory.

[41]  David P. Myatt,et al.  A multinomial probit model of stochastic evolution , 2003 .

[42]  William H. Sandholm,et al.  Orders of limits for stationary distributions, stochastic dominance, and stochastic stability , 2010 .