Combining Minimax Shrinkage Estimators
暂无分享,去创建一个
[1] C. Stein. Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .
[2] L. Brown. Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .
[3] C. Morris,et al. Non-Optimality of Preliminary-Test Estimators for the Mean of a Multivariate Normal Distribution , 1972 .
[4] B. Efron,et al. Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case , 1972 .
[5] B. Efron,et al. Combining Possibly Related Estimation Problems , 1973 .
[6] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[7] B. Efron,et al. Data Analysis Using Stein's Estimator and its Generalizations , 1975 .
[8] R. Fay,et al. Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .
[9] Donald B. Rubin,et al. Using Empirical Bayes Techniques in the Law School Validity Studies , 1980 .
[10] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[11] James O. Berger,et al. Selecting a Minimax Estimator of a Multivariate Normal Mean , 1982 .
[12] J. Berger,et al. Combining coordinates in simultaneous estimation of normal means , 1983 .
[13] C. Morris. Parametric Empirical Bayes Inference: Theory and Applications , 1983 .
[14] James O. Berger,et al. Bayesian input in Stein estimation and a new minimax empirical Bayes estimator , 1984 .
[15] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[16] E. George. A formal bayes multiple shrinkage estimator , 1986 .