Complex structure on the six dimensional sphere from a spontaneous symmetry breaking

Existence of a complex structure on the 6 dimensional sphere is proved in this paper. The proof is based on re-interpreting a hypothetical complex structure as a classical ground state of a Yang–Mills–Higgs-like theory on S6. This classical vacuum solution is then constructed by Fourier expansion (dimensional reduction) from the obvious one of a similar theory on the 14 dimensional exceptional compact Lie group G2.

[1]  E. Witten Conformal Field Theory In Four And Six Dimensions , 2007, 0712.0157.

[2]  Zizhou Tang,et al.  Bott Generator and Its Application to an Almost Complex Structure on S6 * , 2007 .

[3]  Gil Bor,et al.  Orthogonal almost-complex structures of minimal energy , 2006, math/0609511.

[4]  Jianwei Zhou Grassmann Manifold G(2,8) and Complex Structure on $S^6$ , 2006, math/0608052.

[5]  A. Niemi,et al.  YANG–MILLS, COMPLEX STRUCTURES AND CHERN'S LAST THEOREM , 2005, hep-th/0501050.

[6]  C. Hsiung NONEXISTENCE OF A COMPLEX STRUCTURE ON THE SIX-SPHERE. II , 2001 .

[7]  Bang-Yen Chen,et al.  RIEMANNIAN GEOMETRY OF LAGRANGIAN SUBMANIFOLDS , 2001 .

[8]  L. Ugarte Hodge Numbers of a Hypothetical Complex Structure on the Six Sphere , 2000 .

[9]  T. Peternell,et al.  Group actions on S6 and complex structures on ℙ3 , 2000 .

[10]  T. Peternell,et al.  Group Actions on S^6 and complex structures on P_3 , 1998, math/9812076.

[11]  T. Peternell,et al.  The algebraic dimension of compact complex threefolds with vanishing second Betti number , 1996, Compositio Mathematica.

[12]  M. J. Slupiniski The twistor space of the conformal six sphere and vector bundles on quadrics , 1996 .

[13]  Sigurdur Helgason,et al.  Geometric Analysis on Symmetric Spaces , 1994 .

[14]  S. Donaldson Geometry of four-manifolds , 1990 .

[15]  E. Musso,et al.  On the twistor space of the six-sphere , 1989, Bulletin of the Australian Mathematical Society.

[16]  H. Pittie The Dolbeault-cohomology ring of a compact, even-dimensional lie group , 1988 .

[17]  Tammo tom Dieck,et al.  Representations of Compact Lie Groups , 1985 .

[18]  Ta-Pei Cheng,et al.  Gauge Theory of elementary particle physics , 1984 .

[19]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  A. Adler THE SECOND FUNDAMENTAL FORMS OF S6 AND Pn(C). , 1969 .

[21]  M. Mimura The Homotopy groups of Lie groups of low rank , 1967 .

[22]  R. Mayer SUMMATION OF FOURIER SERIES ON COMPACT GROUJPS. , 1967 .

[23]  Louis Nirenberg,et al.  Complex Analytic Coordinates in Almost Complex Manifolds , 1957 .

[24]  A. Frölicher Zur Differentialgeometrie der komplexen Strukturen , 1955 .

[25]  E. Calabi,et al.  A Class of Compact, Complex Manifolds Which are not Algebraic , 1953 .

[26]  Jean-Pierre Serre,et al.  Groupes de Lie et Puissances Reduites de Steenrod , 1953 .

[27]  N. Daurtseva Invariant complex structures on S3× S3 , 2004 .

[28]  Jean-Pierre Serre Détermination des p-puissances réduites de Steenrod dans la cohomologie des groupes classiques. Applications , 2003 .

[29]  H. Hopf Zur Topologie der komplexen Mannigfaltigkeiten , 2001 .

[30]  Dominic Joyce,et al.  Compact Manifolds with Special Holonomy , 2000 .

[31]  K. Strambach,et al.  Complex Reections and Polynomial Generators of Homotopy Groups , 1996 .

[32]  C. Wood Instability of the nearly-Kähler six-sphere. , 1993 .

[33]  L. Chaves,et al.  On a conjugate orbit of G2 , 1991 .

[34]  C. LeBrun Orthogonal complex structures on , 1987 .

[35]  R. Bryant Submanifolds and special structures on the octonians , 1982 .

[36]  S. Chern Complex manifolds without potential theory , 1979 .

[37]  R. Penrose Nonlinear gravitons and curved twistor theory , 1976 .

[38]  A. Gray Almost complex submanifolds of the six sphere , 1969 .